首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   2篇
  20篇
  2023年   1篇
  2021年   3篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2004年   1篇
  2002年   3篇
  1993年   1篇
排序方式: 共有20条查询结果,搜索用时 0 毫秒
1.
The Mayacaceae are a monogeneric monocot family of herbs that grow on swampy areas in the Americas and in Africa. Both the number of species constituting the family and its inter-familial relationships are unclear. By describing and comparing the floral anatomy of Mayaca fluviatilis, M. fluviatilis f. kunthii, M. longipes and M. sellowiana we have identified some features that delimit the species. These include: arrangement of flowers on the stem, shape of stamens, size of apical pores, disposition of microsporangia, number of ovules and shape of the stylar canal. We concluded that M. fluviatilis f. kunthii should be considered as a species (M. kunthii) rather than a forma. Other characters such as number of stamens and microsporangia, placentation, ovule type and cell numbers in the pollen grain support the placement of the Mayacaceae within Poales.  相似文献   
2.
Changes in arabinoxylan content and composition during development of wheat seedlings were investigated. The cell walls isolated from the seedlings showed an increasing content of arabinoxylan during development, which could be correlated to increased activity of xylan synthase and arabinoxylan arabinosyltransferase. Arabinoxylan changed from initially having a high degree of arabinose substitution to a much lower degree of substitution. beta-Glucan was present in the walls at the early stages of development, but was actively degraded after day 4. Increased deposition of arabinoxylan did not take place until beta-glucan had been fully degraded. Ferulic and p-coumaric acid esters were present at all points but increased significantly from day 3 to 6, where lignification began. Ferulic acid dimers did not appear in the cell wall until day three and the different ferulic acid dimers varied in the course of accumulation. The ratio of ferulic acid dimers to free ferulic acid was maximal at the time when the wall had been depleted for beta-glucan, which had not yet been fully replaced by arabinoxylan. This pattern suggests a role for ferulic acid dimers in stabilizing the wall during the transition from a flexible to a more rigid structure. To investigate if the same changes could be observed within a single seedling, 7 day old seedlings were divided into four sections and the walls were analyzed. Some of the changes observed during the seedling development could also be observed within a single seedling, when analyzing the segments from the elongation zone at the base to the top of the leaf. However, the expanding region of older seedlings was much richer in hydroxycinnamates than the expanding region of younger seedlings. Diferulic acids are stabilizing the wall in the transition phase from an expanding to a mature wall. This transition can take place in different manners depending on the cell and tissue type.  相似文献   
3.
BACKGROUND AND AIMS: Eriocaulaceae (Poales) is currently divided in two subfamilies: Eriocauloideae, which comprises two genera and Paepalanthoideae, with nine genera. The floral anatomy of Actinocephalus polyanthus, Leiothrix fluitans, Paepalanthus chlorocephalus, P. flaccidus and Rondonanthus roraimae was studied here. The flowers of these species of Paepalanthoideae are unisexual, and form capitulum-type inflorescences. Staminate and pistillate flowers are randomly distributed in the capitulum and develop centripetally. This work aims to establish a floral nomenclature for the Eriocaulaceae to provide more information about the taxonomy and phylogeny of the family. METHODS: Light microscopy, scanning electron microscopy and chemical tests were used to investigate the floral structures. KEY RESULTS: Staminate and pistillate flowers are trimerous (except in P. flaccidus, which presents dimerous flowers), and the perianth of all species is differentiated into sepals and petals. Staminate flowers present an androecium with scale-like staminodes (not in R. roraimae) and fertile stamens, and nectariferous pistillodes. Pistillate flowers present scale-like staminodes (except for R. roraimae, which presents elongated and vascularized staminodes), and a gynoecium with a hollow style, ramified in stigmatic and nectariferous portions. CONCLUSIONS: The scale-like staminodes present in the species of Paepalanthoideae indicate a probable reduction of the outer whorl of stamens present in species of Eriocauloideae. Among the Paepalanthoideae genera, Rondonanthus, which is probably basal, shows vascularized staminodes in their pistillate flowers. The occurrence of nectariferous pistillodes in staminate flowers and that of nectariferous portions of the style in pistillate flowers of Paepalanthoideae are emphasized as nectariferous structures in Eriocaulaceae.  相似文献   
4.
Cyperaceae (sedges) are the third largest monocot family and are of considerable economic and ecological importance. Sedges represent an ideal model family to study evolutionary biology due to their species richness, global distribution, large discrepancies in lineage diversity, broad range of ecological preferences, and adaptations including multiple origins of C4 photosynthesis and holocentric chromosomes. Goetghebeur′s seminal work on Cyperaceae published in 1998 provided the most recent complete classification at tribal and generic level, based on a morphological study of Cyperaceae inflorescence, spikelet, flower, and embryo characters, plus anatomical and other information. Since then, several family-level molecular phylogenetic studies using Sanger sequence data have been published. Here, more than 20 years after the last comprehensive classification of the family, we present the first family-wide phylogenomic study of Cyperaceae based on targeted sequencing using the Angiosperms353 probe kit sampling 311 accessions. In addition, 62 accessions available from GenBank were mined for overlapping reads and included in the phylogenomic analyses. Informed by this backbone phylogeny, a new classification for the family at the tribal, subtribal, and generic levels is proposed. The majority of previously recognized suprageneric groups are supported, and for the first time, we establish support for tribe Cryptangieae as a clade including the genus Koyamaea. We provide a taxonomic treatment including identification keys and diagnoses for the 2 subfamilies, 24 tribes, and 10 subtribes, and basic information on the 95 genera. The classification includes five new subtribes in tribe Schoeneae: Anthelepidinae, Caustiinae, Gymnoschoeninae, Lepidospermatinae, and Oreobolinae.  相似文献   
5.
Delimitation of genera and species in Bromeliaceae is often problematic, for example in the Neoregelia bahiana complex which is distributed throughout the rocky fields of the Espinhaço Range, Brazil. Considering that the anatomical characterisation of different organs is potentially important for taxonomic and ecological interpretation of this complex, we analysed roots, stems (stolon), leaves, inflorescence axes (peduncle) and pedicels in individuals from different populations. In all the studied individuals, the roots are composed of velamen, a heterogeneous cortex, and a polyarch vascular cylinder with sclerenchymatous pith. The stolon features a parenchymatous cortex and collateral vascular bundles randomly distributed in the vascular cylinder. This organ may increase in diameter by the formation of new vascular bundles and a multi‐layered cork. The leaf blade has epidermal cells with U‐shaped thickened walls and peltate scales occur on the adaxial surface. The mesophyll consists of mechanical and water‐storage hypodermis and a heterogeneous chlorenchyma. The inflorescence axis and the pedicel have a parenchymatous cortex and vascular bundles randomly distributed in an aerenchyma. Some variable leaf characters, such as presence of air lacunae in the mesophyll, are related to the size of the individuals and were interpreted as phenotypic variations related mainly to sunlight incidence. In contrast, leaf characters such as lamina shape, distribution of the peltate scales, and number of cell layers forming the water‐storage hypodermis distinguish the populations of the Serra do Cabral and one population of the Diamantina (Minas Gerais) from the remaining studied populations, suggesting the existence of more than one taxon.  相似文献   
6.
In agricultural ecosystems, weeds indirectly affect crops via phytophagous insects that feed on both weeds and crops. In paddy fields, heteropteran insects are among the most serious pests of rice plants. In some heteropterans, the proboscis is used to suck rice ears, inducing black spots on the grains (i.e., pecky rice). Even a low proportion of pecky rice (>0.1%) significantly decreases the market price of rice; in Japan, this problem has led to severe economic losses. Because heteropterans feed on the reproductive organs of weeds as well as rice plants, various weeds that grow around paddy fields may increase the populations of heteropterans that cause pecky rice. To clarify which types of weeds can be used by heteropterans causing pecky rice, we investigated the interactions between plants (including rice plants) and heteropterans in an agricultural landscape in Hyogo, Japan. We observed 833 individuals of 27 heteropteran species (13 families) feeding on the reproductive organs of 35 plant species (Poales: three families) including rice plants from June to October 2019. All heteropteran species were native, whereas six of 35 plant species were non-native. We found 12 heteropteran species on rice plants; nine of the 12 heteropteran species fed on weeds (a total of 32 species) as well as rice plants, whereas the other three species fed exclusively on rice plants. Heteropterans fed on native weeds throughout the growing seasons (June–October), but on non-native weeds only before rice plants bloomed (June–July). Therefore, diverse weed species that grow around paddy fields are food resources for heteropteran insects and they might indirectly increase the incidence of pecky rice.  相似文献   
7.
8.
Simultaneous microsporogenesis is described for the first time in a grass, Streptochaeta spicata Schrad., a tropical Brazilian species that belongs in the early‐divergent subfamily Anomochlooideae. Microsporogenesis is successive in all other Poaceae examined so far, and most other members of the order Poales, to which grasses belong. The only other reports of simultaneous microsporogenesis in Poales are in Rapateaceae and some members of the cyperid clade (Juncaceae, Cyperaceae, Prionium and Thurnia). Among the graminids, Ecdeiocolea (the putative closest relative to Poaceae) is successive, as are Joinvillea, Flagellaria and all other Poaceae, indicating that the simultaneous condition is autapomorphic in Streptochaeta, though Anomochloa has yet to be examined. Anther wall development in Streptochaeta is of the reduced type, as also in another early‐divergent grass Pharus, though most other Poales, including most grasses, have the monocot type. In Streptochaeta, as in Pharus, the endothecium lacks thickenings, unlike other grasses that have a persistent endothecium with thickenings. The centrifixed anthers and nonplumose stigmas of Streptochaeta suggest entomophily.  相似文献   
9.
The net orientation of cellulose fibrils in the outer epidermal wall of the root elongation zone of 57 angiosperm species belonging to 29 families was determined by means of Congo Red fluorescence and polarization confocal microscopy. The angiosperms can be divided in three groups. In all but four plant families, the net orientation of the cellulose fibrils is transverse to the root axis. Three families, the Poaceae, Juncaceae and Cyperaceae, have a totally different organization. In the root elongation zone of these plants, the net orientation of cellulose fibrils in the outer epidermal wall is parallel with the root axis. In roots of one family, the Arecaceae, an elongation zone in the literal sense of the word is absent and cellulose fibrils are randomly oriented.  相似文献   
10.
Floral anatomy is described in ten genera of Bromeliaceae, including three members of subfamily Bromelioideae, three Tillandsioideae, and four genera of the polyphyletic subfamily Pitcairnioideae (including Brocchinia, the putatively basal genus of Bromeliaceae). Bromeliaceae are probably unique in the order Poales in possessing septal nectaries and epigynous or semi-epigynous flowers. Evidence presented here from floral ontogeny, vasculature, and the relative positions of nectary and ovules indicates that there could have been one or more reversals to apparent hypogyny in Bromeliaceae, although this hypothesis requires a better-resolved phylogeny. Such evolutionary reversals probably evolved in response to specialist pollinators, and in conjunction with other aspects of floral morphology of Bromeliaceae, such as the petal appendages of some species. The ovary is initiated in an inferior position even in semi-epigynous or hypogynous species. The ovary of all so-called hypogynous Bromeliaceae is actually semi-inferior, because the septal nectary is infralocular; in these species the nectaries have a labyrinthine surface and many vascular bundles. Brocchinia differs from most other fully epigynous species in that each carpel is secretory at the apex and reproductive, rather than secretory, at the base.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号