首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  2020年   1篇
  2015年   1篇
  2011年   1篇
  1992年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Because of the high risk of going unnoticed, cryptic species represent a major challenge to biodiversity assessments, and this is particularly true for taxa that include many such species, for example, bats. Long‐eared bats from the genus Plecotus comprise numerous cryptic species occurring in the Mediterranean Region and present complex phylogenetic relationships and often unclear distributions, particularly at the edge of their known ranges and on islands. Here, we combine Species Distribution Models (SDMs), field surveys and molecular analyses to shed light on the presence of a cryptic long‐eared bat species from North Africa, Plecotus gaisleri, on the islands of the Sicily Channel, providing strong evidence that this species also occurs in Europe, at least on the islands of the Western Mediterranean Sea that act as a crossroad between the Old Continent and Africa. Species Distribution Models built using African records of P. gaisleri and projected to the Sicily Channel Islands showed that all these islands are potentially suitable for the species. Molecular identification of Plecotus captured on Pantelleria, and recent data from Malta and Gozo, confirmed the species' presence on two of the islands in question. Besides confirming that P. gaisleri occurs on Pantelleria, haplotype network reconstructions highlighted moderate structuring between insular and continental populations of this species. Our results remark the role of Italy as a bat diversity hotspot in the Mediterranean and also highlight the need to include P. gaisleri in European faunal checklists and conservation directives, confirming the usefulness of combining different approaches to explore the presence of cryptic species outside their known ranges—a fundamental step to informing conservation.  相似文献   
2.
Sympatric cryptic species, characterized by low morphological differentiation, pose a challenge to understanding the role of interspecific competition in structuring ecological communities. We used traditional (morphological) and novel molecular methods of diet analysis to study the diet of two cryptic bat species that are sympatric in southern England (Plecotus austriacus and P. auritus) (Fig. 1). Using Roche FLX 454 (Roche, Basel, CH) high-throughput sequencing (HTS) and uniquely tagged generic arthropod primers, we identified 142 prey Molecular Operational Taxonomic Units (MOTUs) in the diet of the cryptic bats, 60% of which were assigned to a likely species or genus. The findings from the molecular study supported the results of microscopic analyses in showing that the diets of both species were dominated by lepidopterans. However, HTS provided a sufficiently high resolution of prey identification to determine fine-scale differences in resource use. Although both bat species appeared to have a generalist diet, eared-moths from the family Noctuidae were the main prey consumed. Interspecific niche overlap was greater than expected by chance (O(jk) = 0.72, P < 0.001) due to overlap in the consumption of the more common prey species. Yet, habitat associations of nongeneralist prey species found in the diets corresponded to those of their respective bat predator (grasslands for P. austriacus, and woodland for P. auritus). Overlap in common dietary resource use combined with differential specialist prey habitat associations suggests that habitat partitioning is the primary mechanism of coexistence. The performance of HTS is discussed in relation to previous methods of molecular and morphological diet analysis. By enabling species-level identification of dietary components, the application of DNA sequencing to diet analysis allows a more comprehensive comparison of the diet of sympatric cryptic species, and therefore can be an important tool for determining fine-scale mechanisms of coexistence.  相似文献   
3.
4.
Summary Mean oxygen consumption and simultaneous ventilation frequency of nine non-reproductive brown long-eared bats (body mass 8.53–13.33 g) were measured on 159 occasions. Ambient (chamber) temperature at which the measurements were made ranged from 10.8 to 41.1°C. Apneic ventilation occurred in 22 of the 59 measurements made when mean oxygen consumption was less than 0.5 ml·min-1. No records of apneic ventilation were obtained when it was over 0.5 ml·min-1. The relationship between ventilation frequency and mean oxygen consumption depended on whether ventilation was apneic or non-apneic. When ventilation was non-apneic the relationship was positive and log-linear. When ventilation was apneic the relationship was log-log. Within the thermoneutral zone ventilation frequency was not significantly different from that predicted from allometric equations for a terrestrial mammal of equivalent body mass, but was significantly greater than that predicted for a bird. A reduction in the amount of oxygen consumed per breath occurred at ambient temperatures above the upper critical temperature (39°C).Abbreviations RH relative humidity - T a chamber temperature - vf ventilation frequency - VO2 oxygen consumption  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号