首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   18篇
  国内免费   44篇
  2024年   3篇
  2023年   7篇
  2022年   14篇
  2021年   11篇
  2020年   10篇
  2019年   10篇
  2018年   13篇
  2017年   12篇
  2016年   6篇
  2015年   18篇
  2014年   9篇
  2013年   26篇
  2012年   12篇
  2011年   5篇
  2010年   7篇
  2009年   14篇
  2008年   17篇
  2007年   16篇
  2006年   9篇
  2005年   9篇
  2004年   11篇
  2003年   12篇
  2002年   9篇
  2001年   4篇
  2000年   5篇
  1999年   3篇
  1998年   5篇
  1997年   6篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1992年   4篇
  1991年   5篇
  1990年   1篇
  1989年   5篇
  1987年   1篇
排序方式: 共有305条查询结果,搜索用时 46 毫秒
1.
In non-legumes associative nitrogen-fixing system, several genera of rhizobacteria have been reported. The object of this paper is to summarize the current understanding of how rhizobacteria adhere to the root surface of non-legumes especially rice and other cereal crops. Evidence for involvement of rice lectin in adhesion will be reviewed. An emphasis will be placed on theKlebsiella R15 ammonium assimilation system in free-living state and in associative state with rice seedlings. Nitrogenase and glutamine synthetase (GS) activities of associativeKlebsiella increased significantly in the rhizosphere of rice comparing to the free-living state. In rice, the soluble form of GS specific activity appear to be slightly lower than in rice root in the absence of bacteria. These results suggest that nitrogen-fixing activity has been enhanced during association. The dinitrogen fixed should be changed to amino acids via GS-GOGAT pathway in bacteria. Transfer of fixed nitrogen and assimilation in the rice plant is the problem that needs to be solved in order to improve the efficiency of associative nitrogen fixation.  相似文献   
2.
Genetic approaches for studying rhizosphere colonization   总被引:3,自引:0,他引:3  
Most bacterial traits involved in colonization of plant roots are yet to be defined. Studies were initiated to identify genes in Pseudomonas which play significant roles in this process. The general approach is to use transposons to construct collections of insertion mutants, each of which is then screened for alterations in its interactions with the host plant. In one study a Tn5 derivative containing a constitutively expressed -galactosidase (lacZ) gene was used to generate a collection of insertion mutants which could be distinguished from the wild-type parent on X-gal plates. Each mutant was examined for its ability to colonize wheat seedlings in the presence of the wild-type parent. Mutants which gave wild-type:mutant ratio of 20:1 or greater were obtained. In a second study a Tn5 derivative which carries a promoterless lacZ gene located near one end of the transposon was constructed. Expression of the lacZ gene depends on the presence of an active promoter outside of the transposon in the correct orientation. Insertion mutants generated with this transposon were examined for changes in -galactosidase expression in the presence and absence of plant root exudate. A number of mutants which showed differential lacZ expression have been identified.  相似文献   
3.
The influence exerted by Pseudomonas fluorescens, strain 63-28R, in stimulating plant defense reactions was investigated using an in-vitro system in which Ri T-DNA-transformed pea (Pisum sativum L.) roots were subsequently infected with Pythium ultimum. Cytological investigations of samples from P. fluorescens-inoculated roots revealed that the bacteria multiplied abundantly at the root surface and colonized a small number of epidermal and cortical cells. Penetration of the epidermis occurred through the openings made by the disruption of the fibrillar network at the junction of adjacent epidermal cell walls. Direct cell wall penetration was never observed and bacterial ingress into the root tissues proceeded via an intercellular route. Striking differences in the extent of fungal colonization were observed between bacterized and non-bacterized pea roots following inoculation with P. ultimum. In non-bacterized roots, the pathogen multiplied abundantly through most of the tissues while in bacterized roots, pathogen growth was restricted to the epidermis and the outer cortex. At the root surface, the bacteria interacted with the pathogen, in a way similar to that observed in dual culture tests. Most Pythium cells were severely damaged but fungal penetration by the bacteria was never observed. Droplets of the amorphous material formed upon interaction between the bacteria and the host root were frequently found at the fungal cell surface. Incubation of sections with a -1,4-exoglucanase-gold complex revealed that the cell wall of markedly altered Pythium hyphae was structurally preserved. Successful penetration of the root epidermis was achieved by the few hyphae of P. ultimum that could escape the first defensive line in the rhizosphere. Most hyphae of the pathogen that penetrated the epidermis exhibited considerable changes. The unusual occurrence of polymorphic wall appositions along the host epidermal cells was an indication that the host plant was signalled to defend itself through the elaboration of physical barriers.Abbreviations AGL Aplysia gonad lectin - PGPR plant growth-promoting rhizobacteria The authors wish to thank Sylvain Noël for excellent technical assistance. This study was supported by grants from the Fonds Québécois pour la formation de chercheurs et l'Aide à la Recherche (FCAR), the Natural Sciences and Engineering Council of Canada (NSERC) and the Ministère de l'Industrie, du Commerce, de la Science et de la Technologie (SYNERGIE).  相似文献   
4.
Bacterial populations in different parts of the rhizosphere of rice and banana in Sri lanka were examined. On rice, the number of aerobic bacteria and the population of fluorescent bacteria were higher in the rhizoplane as compared to the exorhizosphere. However, the opposite was observed with banana. Percentage of fluorescent bacteria was significantly higher on banana (10.8%) than on rice from the wet and dry zones of Sri Lanka (4.3% and 2.7%, respectively). In the endorhizosphere fraction of rice, bacterial populations were very low. Fluorescent bacteria were absent.Based on 33 phenotypical tests, 89 fluorescent isolates were grouped into 5 clusters. The three major clusters covered the isolates belonging to the Pseudomonas fluorescens-putida group, whereas the remaining small clusters contained other UV-fluorescent bacteria. SDS-PAGE of total cell proteins enabled classification of the isolates into one of 12 different protein-polymorphic types. Only a partial correlation was found between the latter classification and the phenotypical one. Cyanogenesis was observed with strains of P. fluorescens only. Isolates P. fluorescens RW9S1 and P. cepacia RW5P1 displayed a potent antagonism against several fungi.  相似文献   
5.
6.
A modified approach was adopted to develop co-flocs consisting of Azospirillum brasilense MTCC-125 and Pseudomonas fluorescens MTCC-4828. The results of our study revealed that both Azospirillum and Pseudomonas strains exhibited a higher survivability when embedded in the flocs. The survivability of the strains in co-floc was found to be higher when compared to the log phase vegetative cells in different inoculant carriers, spermosphere rhizoplane and rhizosphere. The co-floc treatment has also significantly increased the germination percentage and vigour index of rice. In the present study flocculation was found to play a major role in enhancing adhesion of both the strains to rice roots. The co-flocs were studied for their efficiency to induce resistance in rice crop against rice blast. The relative role of Azospirillum and Pseudomonas co-flocs in the induction of resistance against the phytopathogen was evaluated. It was found that when the activities of polyphenol oxidase, peroxidase and phenol were high and when the relative amounts of the sugars were low, the disease infestation was less and vice versa. The association of these compounds strongly implies their role as casual agents of induced resistance against Pyricularia oryzae.  相似文献   
7.
A wide variety of microorganisms known to produce auxin and auxin precursors form beneficial relationships with plants and alter host root development. Moreover, other signals produced by microorganisms affect auxin pathways in host plants. However, the precise role of auxin and auxin‐signalling pathways in modulating plant–microbe interactions is unknown. Dissecting out the auxin synthesis, transport and signalling pathways resulting in the characteristic molecular, physiological and developmental response in plants will further illuminate upon how these intriguing inter‐species interactions of environmental, ecological and economic significance occur. The present review seeks to survey and summarize the scattered evidence in support of known host root modifications brought about by beneficial microorganisms and implicate the role of auxin synthesis, transport and signal transduction in modulating beneficial effects in plants. Finally, through a synthesis of the current body of work, we present outstanding challenges and potential future research directions on studies related to auxin signalling in plant–microbe interactions.  相似文献   
8.
Metal phytoextraction assisted by bacteria plays an important role in bioremediation systems. In this work, mercury-resistant bacterial strains were isolated from soils with high levels of mercury (San Joaquin, Queretaro State, Mexico) and identified as Bacillus sp. based on the 16S rDNA gene sequence analysis. The bacterial strains were found to exhibit different multiple mercury-resistance and carbon source utilization characteristics. The mercury reduction ability was tested through a volatilization assay. The bacterial isolates were also evaluated for their ability to promote growth and mercury uptake in tomato plants. In a roll towel assay, the maximum vigor index of tomato plants was obtained with the inoculation of Bacillus sp. A2, A12, B11, B15 and C1, while in a pot assay, the maximum vigor index was obtained with the inoculation of Bacillus sp. A6, A7 and B20, compared with un-inoculated controls in the presence of HgCl2. Maximum Hg accumulation in the roots and shoots of tomato plants was obtained only with Bacillus sp. A7 in the roll towel assay, whereas in the pot assay, maximum accumulation was obtained with Bacillus sp. A12 compared with un-inoculated controls. Our results show that mercury accumulation in tissue is enhanced by these plant growth promoting bacterial strains, which recommends their possible use as microbe-assisted phytoremediation systems in mercury-polluted soils.  相似文献   
9.
The aim of this study was to evaluate the efficacy of selected bacterial strains against the wheat soil‐borne pathogen Fusarium graminearum under greenhouse conditions. The most potent isolates were 3 isolates out of 18 isolates, which have numbers 3, 9 and 10 with in vitro inhibition index 42.5%, 41.3% and 46.3% respectively. Isolates 3 and 10 were selected for the following experiments. Isolates 3 and 10 were identified as Bacillus subtilis MAA03 and Pseudomonas fluorescens MAA10, respectively according to International Identification Keys and, confirmed by using Biolog system and 16S rDNA where the strains exhibited more than 99.5% sequence identity. Their close taxonomic relationship was further documented by phenotypic similarities. The using of B. subtilis and P. fluorescens separately or in mixture as biocontrol agent against F. graminearum on wheat significantly increased the final germination percent, the mean daily germination and germination index of wheat cultivar, while the mean germination time was significantly decreased relative to infested control. The final infection percent, the mean daily infection and infection index were decreased significantly, while the mean infection time was significantly increased relative to infested control. The use of P. fluorescens as biocontrol agent was the most efficient than B. subtilis or in mixture and the best treatment was seed coating. The application of B. subtilis and P. fluorescens separately or in combination significantly affected the growth parameters of wheat cultivar Tabuki, the root length was significantly increased in seed coating and seed soaking treatments, while non‐significantly decreased in case of soil drench treatment relative to infested control. Shoot length was significantly decreased in case of seed coating treatment relative to infested control. The shoot fresh and dry weights were significantly increased in seed coating and seed soaking treatments relative to infested control. The root fresh and dry weights were significantly increased in seed coating and seed soaking treatments relative to infested control. The number of leaves was significantly increased in all treatments relative to infested control.  相似文献   
10.
Abstract

Induction of resistance to downy mildew caused by Plasmopara halstedii in sunflower was studied after treatment with PGPR (plant growth promoting rhizobacteria) strain INR7 (Bacillus spp). Treatment of sunflower seeds with 1×108cfu/ml of PGPR strain INR7 resulted in decreased disease severity and offered 51 and 54% protection under green house and field conditions, respectively. The induction of resistance to P. halstedii by PGPR strain INR7 was accompanied by the accumulation of various host defense-related enzymes in susceptible sunflower seedlings. Enhanced activation of catalase (CAT), phenylalanine ammonia-lyase (PAL), peroxidase (POX), polyphenol oxidase (PPO) and chitinase (CHI) was evident at 6, 9, 12, 12 and 12h post inoculation, respectively, in sunflower seedlings raised from seeds treated with PGPR strain INR7. This enhanced and early activation of defense-related responses in the susceptible cultivar after treatment with PGPR strain INR7 was comparable to that in the resistant cultivar. The results indicate that PGPR strain INR7 induced resistance against P. halstedii in sunflower is mediated through enhanced expression of defense mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号