首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7236篇
  免费   484篇
  国内免费   626篇
  2024年   11篇
  2023年   57篇
  2022年   92篇
  2021年   109篇
  2020年   135篇
  2019年   160篇
  2018年   130篇
  2017年   153篇
  2016年   193篇
  2015年   198篇
  2014年   321篇
  2013年   341篇
  2012年   292篇
  2011年   388篇
  2010年   294篇
  2009年   404篇
  2008年   424篇
  2007年   469篇
  2006年   424篇
  2005年   363篇
  2004年   335篇
  2003年   301篇
  2002年   195篇
  2001年   198篇
  2000年   219篇
  1999年   225篇
  1998年   211篇
  1997年   145篇
  1996年   153篇
  1995年   143篇
  1994年   138篇
  1993年   121篇
  1992年   113篇
  1991年   109篇
  1990年   100篇
  1989年   94篇
  1988年   83篇
  1987年   84篇
  1986年   75篇
  1985年   58篇
  1984年   45篇
  1983年   33篇
  1982年   42篇
  1981年   38篇
  1980年   33篇
  1979年   32篇
  1978年   15篇
  1977年   15篇
  1976年   12篇
  1973年   4篇
排序方式: 共有8346条查询结果,搜索用时 15 毫秒
1.
THE TIMING OF DIVISION IN CHLAMYDOMONAS   总被引:3,自引:2,他引:1  
  相似文献   
2.
The cost of mutualism in a fly-fungus interaction   总被引:2,自引:0,他引:2  
The movement ability of individuals has become increasingly important to a variety of ecological questions. In this study, I investigate how plant structure and changes in body size through development affect the movement ability of a predaceous stinkbug, Podisus maculiventris, on three species of goldenrod (Solidago spp.) representing a wide range of surface complexities. I adapt existing techniques for quantifying movement in two dimensions to the study of movement on natural plant structures in three dimensions. These experiments indicate that plant structure and insect size are significant factors affecting the movement ability of P. maculiventris. Changes in movement ability due to factors of ontogeny and different habitat structures suggest that the scale of an individual’s ambit or ecological sphere of influence may vary within its lifespan. Considering the influence of ontogeny and habitat structure on movement ability may be useful to investigations of population dynamics, foraging behavior, and pest management. Received: 14 July 1999 / Accepted: 23 March 2000  相似文献   
3.
The presence of litter has the potential to alter the population dynamics of plants. In this paper, we explore the effects of litter on population dynamics using a simple experimental laboratory system with populations of the annual crucifer, Cardamine pensylvanica. Using a factorial experiment with four densities and three litter levels, we determined the effect of litter on biomass and plant fecundity, and the life stages responsible for these changes in yield. Although litter had significant effects on seed germination and on seedling survivorship, we show, using a population dynamics model, that these effects were not demographically significant. Rather, the potential effect of litter on population dynamics resulted almost entirely from its effect on biomass. Persistent litter suppressed plant biomass and apparently removed the direct density effect present in the absence of litter. Thus, litter changed the shape of the recruitment curve from slightly humped to asymptotic. In addition to changing the shape of the recruitment curve, litter reduced the carrying capacity of the populations. Thus, the population dynamics model indicated that not all statistically significant responses were dynamically significant. Given the potential complexity of litter effects, simple population models provide a powerful tool for understanding the potential consequences of short-term responses. Received: 8 September 1999 / Accepted: 5 April 2000  相似文献   
4.
Plots of fresh pulverized fuel ash (PFA, an industrial waste) were inoculated with soils from existing PFA sites and fertilizers in a factorial design, then left unmanaged for 12 years during which time the floral development and soil chemistry were monitored annually. For the first 3 years, the site supported a sparse mix of chenopods (including the scarce Chenopodium glaucum ) and halophytes. As salinity declined, ruderals, legumes, and grasses plus the fire-site moss Funaria hygrometrica colonized, followed by Festuca arundinacea grassland (NVC community MG12) and Hippophae rhamnoides scrub. Dactylorhiza incarnata (orchidacea) appeared after 7 years, but only in plots that had received soil from existing orchid colonies. Four years later, a larger second generation of Dactylorhiza appeared, but only in the central zone of the site where vegetation was thinnest. By year 12, the site was dominated by coarse grasses and scrub, with early successional species persisting only in the sparsely vegetated center, where nitrate levels were lowest. This edge effect is interpreted as centripetal encroachment, a process of potentially wider concern for the conservation of low-fertility habitat patches. Overall, seed bank inoculation seems to have introduced few but desirable species ( D. incarnata , Pyrola rotundifolia , some halophytes, and annuals), whereas initial application of organic fertilizer had long-lasting (≥10 years) effects on cover and soil composition.  相似文献   
5.
A cadaver represents a temporal energy‐loaded resource, which provides arthropods with food, protection and a place in which to find a mate. Insects are usually the first organisms to discover and colonize a cadaver; as decomposition progresses, insects colonize cadavers in a predictable sequence. This work aimed to establish cadaverous entomofauna relationships with regard to stages of decomposition and environmental conditions using multiple correspondence analysis and thereby to identify the way in which insects distribute a perishable and changing resource. Entomofauna were thus collected in a semi‐rural area near Bogotá from the cadavers of three pigs (Sus scrofa L.) which had been shot. Environmental variables were recorded for each sampling. Multiple correspondence analyses were carried out for adult forms belonging to Diptera and Coleoptera families and stages of decomposition, and for Diptera and Coleoptera adult forms and environmental conditions. Stages of decomposition were a primary determining factor for structuring four guilds of entomofauna. However, environmental conditions influenced insect activity and were therefore a relevant factor in the structure of the entomofauna community. The results showed that the insects' distribution of available resources was related to changes in the stage of decomposition.  相似文献   
6.
Abstract. Soil resource availability may affect plant regeneration by resprouting in disturbed environments directly, by affecting plant growth rates, or indirectly by determining allocation to storage in the resprouting organs. Allocation to storage may be higher in stressful, low resource‐supply soils, but under such conditions plant growth rates may be lower. These factors could act in opposite directions leading to poorly known effects on resprouting. This paper analyses the role played by soil resources in the production and growth of resprouts after removal of above‐ground plant tissues in the Mediterranean shrub Erica australis. At 13 sites, differing in substrate, we cut the base of the stems of six plants of E. australis and allowed them to resprout and grow for two years. Soils were chemically analysed and plant water potential measured during the summer at all sites to characterize soil resource availability. We used stepwise regression analysis to determine the relationships between the resprouting response [mean site values of the number of resprouts (RN), maximum length (RML) and biomass (RB)] and soil nutrient content and plant water potential at each site. During the first two years of resprouting there were statistically significant differences among sites in the variables characterizing the resprouting response. RML was always different among sites and had little relationship with lignotuber area. RN was less different among sites and was always positively correlated with lignotuber area. RB was different among sites after the two years of growth. During the first months of resprouting, RN and RML were highly and positively related to the water status of the plant during summer. At later dates soil fertility variables came into play, explaining significant amounts of variance of the resprouting variables. Soil extractable cations content was the main variable accounting for RML and RB. Our results indicate that resprout growth of E. australis is positively affected by high water availability at the beginning of the resprouting response and negatively so by high soil extractable cation content at later periods. Some of these factors had previously shown to be related, with an opposite sign, to the development of a relatively larger lignotuber. Indeed, RML and RB measured in the second year of resprouting were significantly and negatively correlated with some indices of biomass allocation to the lignotuber at each site. This indicates that sites favouring allocation to the resprouting organ may not favour resprout growth.  相似文献   
7.
Biomass production and plant species diversity in grassland in southern England was monitored before and after a change from conventional to organic farming. Our 18-year study, part of the UK's Environmental Change Network long-term monitoring programme, showed that the cessation of artificial fertiliser use on grassland after conversion to organic farming resulted in a decrease in biomass production and an increase in plant species richness. Grassland productivity decreased immediately after fertiliser application ceased, and after two years the annual total biomass production had fallen by over 50%. In the subsequent decade, total annual grassland productivity did not change significantly, and yields reached 31–66% of the levels recorded pre-management change. Plant species richness that had remained stable during the first 5 years of our study under conventional farming, increased by 300% over the following 13 years under organic farm management. We suggest that the change in productivity is due to the altered composition of species within the plots. In the first few years after the change in farming practice, high yielding, nitrogen-loving plants were outcompeted by lower yielding grasses and forbs, and these species remained in the plots in the following years. This study shows that grassland can be converted from an environment lacking in plant species diversity to a relatively species-rich pasture within 10–15 years, simply by stopping or suspending nitrogen additions. We demonstrate that the trade-off for increasing species richness is a decrease in productivity. Grassland in the UK is often not only managed from a conservation perspective, but to also produce a profitable yield. By considering the species composition and encouraging specific beneficial species such as legumes, it may be possible to improve biomass productivity and reduce the trade-off.  相似文献   
8.
Questions: Is change in cover of dominant species driving the velocity of succession or is it species turnover (1)? Is the length of the time‐step chosen in sampling affecting our recognition of the long‐term rate of change (2)1 Location: 74 permanent plots located in the Swiss National Park, SE Switzerland, ca. 1900 m a.s.l. Methods: We superimpose several time‐series from permanent plots to one single series solely based on compositional dissimilarity. As shown earlier (Wildi & Schütz 2000) this results in a synthetic series covering about 400 to 650 yr length. Continuous power transformation of cover‐percentage scores is used to test if the dominance or the presence‐absence of species is governing secondary succession from pasture to forest. The effect of time step length is tested by sub‐samples of the time series. Results: Altering the weight of presence‐absence versus dominance of species affects the emerging time frame, while altering time step length is uncritical. Where species turnover is fast, different performance scales yield similar results. When cover change in dominant species prevails, the solutions vary considerably. Ordinations reveal that the synthetic time series seek for shortest paths of the temporal pattern whereas in the real system longer lasting alternatives exist. Conclusions: Superimposing time series differs from the classical space‐for‐time substitution approach. It is a computation‐based method to investigate temporal patterns of hundreds of years fitting between direct monitoring (usually limited to decades) and the analysis of proxy‐data (for time spans of thousands of years and more).  相似文献   
9.
Sesquiterpene lactones are characteristic natural products in Asteraceae, which constitutes ∼8% of all plant species. Despite their physiological and pharmaceutical importance, the biochemistry and evolution of sesquiterpene lactones remain unexplored. Here we show that germacrene A oxidase (GAO), evolutionarily conserved in all major subfamilies of Asteraceae, catalyzes three consecutive oxidations of germacrene A to yield germacrene A acid. Furthermore, it is also capable of oxidizing non-natural substrate amorphadiene. Co-expression of lettuce GAO with germacrene synthase in engineered yeast synthesized aberrant products, costic acids and ilicic acid, in an acidic condition. However, cultivation in a neutral condition allowed the de novo synthesis of a single novel compound that was identified as germacrene A acid by gas and liquid chromatography and NMR analyses. To trace the evolutionary lineage of GAO in Asteraceae, homologous genes were further isolated from the representative species of three major subfamilies of Asteraceae (sunflower, chicory, and costus from Asteroideae, Cichorioideae, and Carduoideae, respectively) and also from the phylogenetically basal species, Barnadesia spinosa, from Barnadesioideae. The recombinant GAOs from these genes clearly showed germacrene A oxidase activities, suggesting that GAO activity is widely conserved in Asteraceae including the basal lineage. All GAOs could catalyze the three-step oxidation of non-natural substrate amorphadiene to artemisinic acid, whereas amorphadiene oxidase diverged from GAO displayed negligible activity for germacrene A oxidation. The observed amorphadiene oxidase activity in GAOs suggests that the catalytic plasticity is embedded in ancestral GAO enzymes that may contribute to the chemical and catalytic diversity in nature.  相似文献   
10.
Starfish waste has been shown to be an effective compost material not only in the promotion of plant growth but also in terms of having insecticidal activity. In the present study, plant growth regulation by chemicals from starfish was examined. The aqueous fraction from a hot water extract of the starfish Asterias amurensis Lütken showed plant-growth activity, while the aqueous fraction from a methanol extract inhibited growth of Brassica campestris. The lipophilic fraction from the methanol extract also exhibited a plant growth-promoting effect. The active components from each extract were identified. Asterubine from the hot water extract promoted plant growth. A ceramide from the lipophilic fraction showed root growth promoting effect, and three glucocerebrosides had promotive effects on the entire plant. Asterosaponins were identified as the main growth inhibitors in the aqueous fraction of the methanol extract. These active compounds from starfish waste could be analyzed as potential plant growth regulators in agricultural applications in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号