首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   2篇
  2017年   1篇
  2014年   1篇
  2010年   3篇
  2007年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
丝氨酸苏氨酸蛋白激酶G(PknG)是分枝杆菌中一个类似于真核生物蛋白激酶C的蛋白质,对结核分枝杆菌的生长和新陈代谢等生理过程,以及结核分枝杆菌的耐药和在宿主细胞中的存活都起着重要的调节作用.本文在耻垢分枝杆菌(Mycobacterium smegmatis)mc2155中构建了过表达结核分枝杆菌PknG的重组菌株PknG-mc2155,并发现PknG-mc2155的生长速度慢于mc2155.应用化学修饰结合LC-LC-MS/MS的定量蛋白质组学方法,在mc2155和PknG-mc2155中鉴定到了176种有差异表达的蛋白,其中152种蛋白在PknG-mc2155中表达下调,24种蛋白表达上调.这些差异表达的蛋白参与了多个细胞过程,包括代谢、蛋白翻译等.基于这些结果,我们推测PknG-mc2155生长速度慢的原因是因为代谢相关酶如GlpK,ALD和DesA1等蛋白表达的下调;而Ag85A,Ag85C,SecA2等蛋白的上调则增强细菌的感染性;另外KatG蛋白的下调提示PknG的过表达增强了菌株的抗药性.代谢组学分析发现谷氨酸和谷氨酰胺在PknG-mc2155中的水平低于在mc2155中水平,证实了PknG影响谷氨酰胺的稳态平衡.利用蛋白质磷酸化分析,我们发现PknG的苏氨酸残基T-320上有一个自磷酸化修饰,而且在PknG-mc2155菌株中,也鉴定到gltA和glmM上的磷酸化修饰,显示gltA和glmM是PknG的底物.本研究为理解PknG的功能和作用机制提供了新的依据和解释,为深入研究PknG在结核分枝杆菌中的功能奠定了基础,我们的结果也表明蛋白质组学技术是系统研究细菌蛋白质功能的重要工具.  相似文献   
2.
邱并生 《微生物学通报》2010,37(2):0311-0311
<正>结核分枝杆菌在被巨噬细胞吞噬、形成吞噬体后,可以通过阻止吞噬体的成熟及其与溶酶体的融合,而使其自身不被溶酶体酶降解,从而在巨噬细胞内长期存留下来。此时的细菌代谢活动降至最低,生长繁殖几乎停止,不易被抗菌药物杀灭,这种类似于休眠的长期存活状态被称为"持留"状态。当机体免疫力下降时,  相似文献   
3.
Mycobacterium tuberculosis is one of the most successful pathogens known, having infected more than a third of the global population. An important strategy for intracellular survival of pathogenic mycobacteria relies on their capacity to resist delivery to lysosomes, instead surviving within macrophage phagosomes. Several factors of both mycobacterial and host origin have been implicated in this process. However, whether or not this strategy is employed in vivo is not clear. Here we show that in vivo, following intravenous infection, M. tuberculosis and Mycobacterium bovis BCG initially survived by resisting lysosomal transfer. However, after prolonged infection the bacteria were transferred to lysosomes yet continued to proliferate. A M. bovis BCG mutant lacking protein kinase G (PknG), that cannot avoid lysosomal transfer and is readily cleared in vitro, was found to survive and proliferate in vivo. The ability to survive and proliferate in lysosomal organelles in vivo was found to be due to an altered host environment rather than changes in the inherent ability of the bacteria to arrest phagosome maturation. Thus, within an infected host, both M. tuberculosis and M. bovis BCG adapts to infection-specific host responses. These results are important to understand the pathology of tuberculosis and may have implications for the development of effective strategies to combat tuberculosis.  相似文献   
4.
Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis (TB), evades the antimicrobial defenses of the host and survives within the infected individual through a complex set of strategies. These include active prevention of host cellular killing processes as well as overwhelming adaptive gene expression. In the past decade, we have gained an increased understanding of how mycobacteria not only have the ability to adapt to a changing host environment but also actively interfere with the signaling machinery within the host cell to counteract or inhibit parts of the killing apparatus employed by the macrophage. Mtb is able to sense its environment via a set of phospho-signaling proteins which mediate its response and interaction with the host in a coordinated manner. In this review, we summarize the current knowledge about selected Mtb serine, threonine, and tyrosine kinase and phosphatase signaling proteins, focusing on the protein kinases, PknG and PtkA, and the protein phosphatase, PtpA.  相似文献   
5.
We recently showed that the activity of the 2-oxoglutarate dehydrogenase complex (ODHC) in Corynebacterium glutamicum is controlled by a novel regulatory mechanism that involves a 15-kDa protein called OdhI and serine/threonine protein kinase G (PknG). In its unphosphorylated state, OdhI binds to the E1 subunit (OdhA) of ODHC and, thereby, inhibits its activity. Inhibition is relieved by phosphorylation of OdhI at threonine-14 by PknG under conditions requiring high ODHC activity. In this work, evidence is provided that the dephosphorylation of phosphorylated OdhI is catalyzed by a phospho-Ser/Thr protein phosphatase encoded by the gene cg0062, designated ppp. As a decreased ODHC activity is important for glutamate synthesis, we investigated the role of OdhI and PknG for glutamate production under biotin limitation and after addition of Tween-40, penicillin, or ethambutol. A ΔodhI mutant formed only 1–13% of the glutamate synthesized by the wild type. Thus, OdhI is essential for efficient glutamate production. The effect of a pknG deletion on glutamate synthesis was dependent on the induction conditions. Under strong biotin limitation and in the presence of ethambutol, the ΔpknG mutant showed significantly increased glutamate production, offering a new way to improve production strains. Dedicated to Prof. Dr. Hermann Sahm on the occasion of his 65th birthday  相似文献   
6.
结核分枝杆菌可以产生11种丝氨酸/苏氨酸蛋白激酶,其中蛋白激酶G(PknG)对于结核分枝杆菌在巨噬细胞内以"持留"状态长期存活有着重要作用。本研究以结核分枝杆菌基因组DNA为模板,在大肠杆菌中克隆表达了MTBPknG蛋白,并分离纯化得到PknG纯酶。本研究还采用三步级联反应方法测定了PknG酶活性,建立和优化了PknG抑制剂高通量筛选模型。利用此模型共筛选发酵液样品2120个,化合物样品2300个,筛选得到阳性化合物1个,阳性发酵液13个,阳性率0.32%。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号