首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   20篇
  国内免费   1篇
  2022年   1篇
  2021年   5篇
  2020年   11篇
  2019年   4篇
  2018年   7篇
  2017年   7篇
  2016年   10篇
  2015年   4篇
  2014年   7篇
  2013年   7篇
  2012年   3篇
  2010年   4篇
  2009年   4篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1979年   1篇
排序方式: 共有105条查询结果,搜索用时 15 毫秒
1.
Developing efficient sampling protocols is essential to monitor crop pests. One vector of the citrus disease HLB, the African citrus psyllid Trioza erytreae Del Guercio, 1918 (Hemiptera: Triozidae), currently threatens the lemon industry throughout the Mediterranean region. In this work, a pool of sampling methods devoted to monitoring the population of T. erytreae was compared, its spatial distribution in the orchard was assessed, and the minimum sampling effort for the best sampling method was estimated. Three lemon orchards in North-western Portugal were sampled for one year using two types of yellow sticky traps (standard yellow and fluorescent Saturn yellow), B-vac sampling and sweep net sampling. The method that best performed, in terms of cost-efficiency, was the yellow sticky traps. The two colours of the sticky traps tested did not yield a significantly different number of catches. The spatial distribution throughout the orchards was found to be aggregated towards the borders. A minimum of three sticky traps per hectare was found to be enough to estimate the population at 90% accuracy for the mean during the outbreak. These results should help to monitor and anticipate outbreaks that may even colonize neighbour orchards. Studies on the local dispersion patterns of T. erytreae throughout the orchard are mandatory to further refine and optimize efficient monitoring protocols.  相似文献   
2.
Seasonality often influences multiple aspects of vector-borne plant diseases. With respect to the management of plant disease vectors, an understanding of the factors driving seasonal changes in vector flight activity may improve management outcomes by facilitating more proactive application of control measures. One of the most challenging issues for citrus Huanglongbing management is to forecast when disease primary spread by bacteriliferous Diaphorina citri will occur. We monitored the temporal patterns of immigrating psyllids, using upwards of 1,200 traps spread among 9 citrus farms and checked on a weekly basis over 4 years. This dataset was analysed with a set of hierarchical models to estimate the effect of climatic variables on citrus foliage production (i.e. flush), and effects of climatic variables and citrus foliage dynamics on D. citri catches over the season. The results showed substantial seasonal variability in immigrating D. citri abundance, with the critical dispersal/migration period occurring between end of winter and spring. During this period, 65% of the total psyllids were collected on sticky traps. Seasonality of immigrating D. citri coincided with changes in certain climate variables, with negative effects of humidity and daily maximum temperatures, and a positive effect of rainfall amount in prior weeks. Maximum temperature and both daily minimum temperature and rainfall during prior weeks were also associated with new citrus flush production, which itself was positively related to immigrating D. citri abundance. Based on these results, citrus growers should be aware and intensify the frequency of psyllid control tactics (i.e. insecticide and/or kaolin sprays) during this period in order to prevent Ca. L. asiaticus transmission. These results are an important step towards developing the predictive framework needed to refine D. citri and huanglongbing management.  相似文献   
3.
Natural populations of Bactericera cockerelli (Sulc) (Hemiptera: Triozidae), also known as tomato/potato psyllid, were marked in potato [Solanum tuberosum L. (Solanaceae)] crops using Bacillus thuringiensis Berliner (Bt) to investigate the impact of dispersal on crop infestation and management of potential insecticide resistance in New Zealand. The technique was adapted from previous studies that used conventional spray applications of Bt to mark Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), and identified marked individuals with selective microbiological assays and identification of characteristic crystal inclusions. Initially, marking rates of B. cockerelli were improved by using ultra‐low volume applications of undiluted Bt, but this result was not consistent. Several other pests and natural enemies were also marked. In mark‐capture studies, marked B. cockerelli were captured over 3 days on yellow sticky traps in small trap plots of potatoes at 60, 120, 180, 250, and 350 m from the sprayed crop. Bactericera cockerelli flight activity occurred throughout daylight hours with evidence of bimodal diurnal peaks. Significantly greater numbers of B. cockerelli were captured in downwind traps. The combined dispersal curve derived from two mark‐capture experiments estimated a mean dispersal distance for B. cockerelli of 100 m in 3 days and indicated that 10% of the population dispersed further than ca. 250 m. Over the period of a growing season, this level of dispersal suggests that B. cockerelli can disperse throughout a vegetable‐growing region, with implications for crop infestation and management of potential insecticide resistance.  相似文献   
4.
Studies designed to measure dispersal capacity of Diaphorina citri Kuwayama (Hemiptera: Liviidae) are needed to provide the epidemiological knowledge necessary to improve management of citrus huanglongbing. In this study, a mark–release–recapture technique was used to investigate whether 1) host or non‐host plants of D. citri can act as barriers for dispersing insects and 2) presence or absence of young citrus leaves influence movement of D. citri towards citrus plants. The experimental field consisted of four circular and adjacent areas containing citrus trees, Citrus sinensis (L.) Osbeck cv. ‘Hamlin’, planted in concentric circles at 18, 24 and 30 m from the release centre. Insect activity was monitored by recapturing at each distance using yellow stick traps. Dense plantings of tall non‐host plants of D. citri such as corn had no effect on insect dispersal towards citrus plants when compared to a shorter cover crop such as grass. In contrast, suitable host plants acted as traps decreasing movement of D. citri. Diaphorina citri dispersed at greater speeds in the absence of young leaves reaching 140 m within 6 hours after release, whereas in the presence of young leaves, individuals reached at most 60 m at 1 day after release. Results suggest that D. citri control measures may be more efficient during periods of highest vegetative activity when insects are less active. Moreover, the use of suitable host plants for D. citri as trap plants may be a potential tactic to prevent movement of insects into the crop.  相似文献   
5.
Twelve polymorphic microsatellite markers were developed from microsatellite‐enriched DNA libraries and mined from an expressed sequence tags library of Diaphorina citri, the vector of the citrus greening disease (huanglongbing). Analysis of 288 individuals from Florida, Texas, and Brazil showed that allelic diversity ranged from three to eight alleles per locus and observed and expected heterozygosities ranged from 0.014 to 0.569 and from 0.052 to 0.653, respectively. These variable microsatellite loci can provide means for assessing overall genetic variation and migration patterns for this agriculturally important pest species. This information can be used to aid in developing successful management strategies.  相似文献   
6.
DNA extraction and storage methods have been evaluated with laboratory-reared leafhoppers and/or field-collected leafhoppers and psyllids. Detection of four different phytopathogenic phytoplasmas, belonging to three taxonomic groups, has been achieved by several direct or nested polymerase chain reaction (PCR) methods with such DNA extracts. Reactions differed in both the 16/23S ribosomal primer pairs used and the specific assay and cycling conditions. Merits and possible hindrances of the various primer pairs, in relation to insect DNA extracts, are discussed. However, identification of the phytoplasma(s) necessarily relied on comparison of the polymorphism in length of the amplified DNA fragments obtained by restriction with appropriate endonucleases. Endonuclease digestion is crucial for determining the identity (subgroup affiliation) of phytoplasmas of the same groups that can be carried by an individual vector.  相似文献   
7.
Epidemiology of European stone fruit yellows was studied by focussing on the life cycle and transmission characteristics of the vector Cacopsyllapruni. The proportion of both phytoplasma positive and inoculative insects was determined for the first C. pruni adults back colonising the stone fruit trees in spring and for the new generations of the vector, hatched at the beginning of summer. We showed that in spring, as soon as the insects moved to stone fruit trees from shelter plants, they were infective. After the vector fed on infected stone fruit trees, the proportion of phytoplasma positive insects increased. The new generation colonising Prunus species also acquired the phytoplasma from their hosts although several of these insects completed the latency period on secondary hosts. Results showed that the risk of natural transmission of European stone fruit yellows-phytoplasma by C. pruni within orchards is high when the vector is present. These results have implications for the control of European stone fruit yellows.  相似文献   
8.
Visual cues play a key role in host finding in many phytophagous insects, including the tomato potato psyllid (TPP), Bactericera cockerelli (?ulc) (Hemiptera: Triozidae), a serious pest of solanaceous crops. This study evaluated the response of TPP to sticky traps of one of three colours, up to four sizes, and with or without green borders in an organic potato crop in Hawke's Bay, New Zealand. On average, large traps caught a higher density of TPP than small traps (with or without border; 25 and 14 TPP per 100 cm2, respectively). Tomato potato psyllid density on the green border was affected by the colour of the centre trap; a blue centre resulted in substantially fewer TPP on the green border than a yellow centre (9.0 vs. 69.6 TPP per 100 cm2). Trap catches in early summer were male biased, whereas catches of male and female TPP in late summer were approximately equal.  相似文献   
9.
The suitability of Agonoscena pistaciae Burckhardt & Lauterer as a prey for Adalia bipunctata (Linnaeus) was evaluated by studying the predator’s development and reproduction on this species in comparison to reference diets of nymphs of Myzus persicae (Sulzer) and eggs of Ephestia kuehniella Zeller. Both larval and adult A. bipunctata fed voraciously on A. pistaciae. The development time of the ladybird was shorter when fed on M. persicae and A. pistaciae and longer on E. kuehniella. The survival rate was 87% on M. persicae and 85% on A. pistaciae, both significantly greater than on E. kuehniella eggs (63%). The ladybirds were heaviest at eclosion and their fecundity was higher on M. persicae than on A. pistaciae or E. kuehniella. Both the aphid and psyllid diets yielded higher R0, rm values and lower T and DT values than E. kuehniella eggs. Based on total development time, immature survival and adult fecundity, the relative suitability for A. bipunctata was M. persicae > A. pistaciae > E. kuehniella. When ladybirds were reared on psyllids, they showed no preference between aphid or psyllid diets, but when raised on M. persicae, they preferred an aphid diet. A field experiment showed that A. bipunctata preferred to oviposit on pistachio trees at a height of 150–200 cm, i.e. towards the top. The results indicate that A. pistaciae constitutes a complete food for A. bipunctata, supporting both completed development and successful reproduction.  相似文献   
10.
The parasitoids associated with the common pistachio psylla, Agonoscena pistaciae Burckhardt and Lauterer, were investigated at three pistachio plantations in Rafsanjan, Iran. Of the 6504 wasps emerging from mummified psyllids, 46% were the primary parasitoid Psyllaephagus pistaciae Ferrière, and the remaining 54% represented six species of hymenopterous hyperparasitoids, including Chartocerus kurdjumovi (Nikol’skaja), Marietta picta (André), Pachyneuron aphidis (Bouché), Pachyneuron muscarum (Linnaeus), Psyllaphycus diaphorinae (Hayat), and Syrphophagus aphidivorus (Mayr). Lysiphlebus fabarum Marshall, the parasitoid of Aphis gossypii Glover and Aphis craccivora Koch present on weeds, was found to be an alternative host for three major hyperparasitoids of A. pistaciae. The most abundant hyperparasitoid was S. aphidivorus, appearing during the growing season in all trial locations on psyllids and aphids in pistachio orchards. The weed-infesting aphids, along with their primary parasitoid, can act as a reservoir of A. pistaciae secondary parasitoids. Therefore, parasitized aphids allow populations of secondary parasitoids to increase and consequently to apply higher pressure on P. pistaciae. We detected that two primary parasitoid species, including P. pistaciae and L. fabarum, attacking different species of hosts interact indirectly through shared secondary parasitism. It is suggested that the community structure of A. pistaciae may be influenced by apparent competition, although more work is needed to provide firm evidence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号