首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   3篇
  国内免费   8篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2015年   6篇
  2014年   28篇
  2013年   31篇
  2012年   29篇
  2011年   37篇
  2010年   29篇
  2009年   5篇
  2008年   2篇
  2007年   4篇
  2006年   4篇
  2005年   5篇
  2004年   3篇
  2003年   1篇
  2002年   6篇
  2001年   3篇
  2000年   1篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1992年   4篇
  1991年   1篇
  1988年   1篇
  1985年   1篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
排序方式: 共有224条查询结果,搜索用时 15 毫秒
1.
Typical 2-Cys peroxiredoxins are required to remove hydrogen peroxide from several different cellular compartments. Their activity can be regulated by hyperoxidation and consequent inactivation of the active-site peroxidatic cysteine. Here we developed a simple assay to quantify the hyperoxidation of peroxiredoxins. Hyperoxidation of peroxiredoxins can only occur efficiently in the presence of a recycling system, usually involving thioredoxin and thioredoxin reductase. We demonstrate that there is a marked difference in the sensitivity of the endoplasmic reticulum-localized peroxiredoxin to hyperoxidation compared with either the cytosolic or mitochondrial enzymes. Each enzyme is equally sensitive to hyperoxidation in the presence of a robust recycling system. Our results demonstrate that peroxiredoxin IV recycling in the endoplasmic reticulum is much less efficient than in the cytosol or mitochondria, leading to the protection of peroxiredoxin IV from hyperoxidation.  相似文献   
2.
边缘性缺乏抗坏血酸之豚鼠,于三周内其肝脏及小肠粘膜3-羟-3-甲基戊二酰辅酶A还原酶(HMGR)活力均下降到原有水平的50%,但肝脏胆固醇7α-羟化酶活力尚无显著性改变。坏血病豚鼠(三周内)上述几种酶活力都下降至原有水平的50%左右。豚鼠摄取抗坏血酸不足,其血清总胆固醇浓度显著增加,而血清高密度脂蛋自胆固醇浓度显著减少,其改变程度与抗坏血酸缺乏状况一致。  相似文献   
3.
Paramecium is a valuable eukaryotic model system for studying chemosensory transduction, adaptation and cellular sensory integration. While millimolar amounts of many attractants hyperpolarize and cause faster forward swimming, oxidants are repellents that depolarize and cause backward swimming at micromolar concentrations. The non-permeant oxidants cytochrome c, nitro blue tetrazolium and ferricyanide are repellents with half maximal concentrations of 0.4 M, 2.2 M and 100 M respectively. In vivo reductase activities follow the same order of potencies. The concentration dependence of the cytochrome c reductase activity is well correlated with cytochrome c-induced depolarizations. This suggests that plasma membrane reduction of external cytochrome c is electrogenic, causing membrane depolarization and chemorepulsion. The reductase activity also appears to be voltage dependent. Depolarization by either K+, Na+, Ca+ or Mg+ correlates with inhibition of both in vivo reductase activities and cytochrome c-induced membrane potential changes. These responses were also seen in deciliated cells, showing that the body plasma membrane is sufficient for the response. Both chloroquine and diphenyleneiodonium inhibited reductase activities but only at unusually high concentrations. This activity showed no pH dependence in the physiological range. We propose that a plasma membrane bound NADPH-dependent reductase controls oxidant-induced depolarizations and consequent chemorepulsion.Abbreviations bmv Body plasma membrane vesicles - BPS Bathophenanthroline disulfonate - cAMP Cyclic adenosine monophosphate - cmv Ciliary membrane vesicles - cyt c Cytochrome c - DPI Diphenyleneiodonium - EC 50 Concentration for 50% effectiveness - FeCN Ferricyanide [Fe(CN)6–3] - FeEDTA Ethylenediaminetetracetic acid (ferric-sodium salt) - GTP Guanosine 5-triphosphate - KCN Potassium cyanide - mM Millimolar - MOPS 3-(N-morpholino) propanesulfonic acid - mV Millivolts - NADH Nicotinamide adenine dinucleotide (reduced form) - NADPH Nicotinamide adenine dinucleotide phosphate (reduced form) - NBT Nitro blue tetrazolium - nm Nanometer - pCMB p-Chloromercuribenzoate - PMA Phorbol 12-myristate 13-acetate - s.d. Standard deviation - SOD Superoxide dismutase - Tris Tris(hydroxymethyl)aminomethane - M Micromolar  相似文献   
4.
NADPH-cytochrome P450 reductase was purified to apparent homogeneity and cytochrome P450 partially purified from whole rat brain. Purified reductase from brain was identical to liver P450 reductase by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot techniques. Kinetic studies using cerebral P450 reductase reveal Km values in close agreement with those determined with enzyme purified from rat liver. Moreover, the brain P450 reductase was able to function successfully in a reconstituted microsomal system with partially purified brain cytochrome P450 and with purified hepatic P450c (P450IA1) as measured by 7-ethoxycoumarin and 7-ethoxyresorufin O-deethylation. Our results indicate that the reductase and P450 components may interact to form a competent drug metabolism system in brain tissue.  相似文献   
5.
《Free radical research》2013,47(6):403-408
In the mid-fifth instar larvae of the cabbage looper moth, Trichoplusia ni, the subcellular distribution of total superoxide dismutase was as follows: 3.05 units (70.0%), 0.97 units (22.3%), and 0.33 units (7.6%) mg?1 protein in the mitochondrial, cytosolic and nuclear fractions, respectively. No superoxide dismutase activity was detected in the microsomal fraction. Catalase activity was unusually high and as follows: 283.4 units (47.3%), 150.1 units (25.1%). 142.3 units (23.8%), and 22.9 units (3.8%) mg?1 protein in the mitochondrial, cytosolic, microsomal (containing peroxisomes), and nuclear fractions. No glutathione peroxidase activity was found, but appreciable glutathione reductase activity was detected with broad subcellular distribution as follows: 3.86 units (36.1%), 3.68 units (34.0%). 2.46 units (23.0%). and 0.70 units (6.5%) mg?1 protein in the nuclear, mitochondrial, and cytosolic fractions, respectively. The unusually wide intracellular distribution of catalase in this phytophagous insect is apparently an evolutionary adaptation to the absence of glutathione peroxidase; hence, lack of a glutathione peroxidase-glutathione reductase role in alleviating stress from lipid peroxidation. Catalase working sequentially to superoxide dismutase, may nearly completely prevent the formation of the lipid peroxidizing OH radical from all intracellular compartments by the destruction of H2O2 which together with O?2 is a precursor of OH.  相似文献   
6.
The chemical modifications of rabbit liver carbonyl reductase (RLCR) with phenylglyoxal (PGO) and 2,3,4-trinitrobenzenesulfonate sodium (TNBS), which are respective chemical modifiers of arginine and lysine residues, were examined. RLCR was rapidly inactivated by these modifiers. Kinetic data for the inactivation demonstrated that each one of arginine and lysine residues is essential for catalytic activity of the enzyme. Furthermore, based on the protective effects of NADP +, NAD + and their constituents against the inactivation of RLCR by PGO and TNBS, we propose the possibility that the functional arginine and lysine residues are located in the coenzyme-binding domain of RLCR and interact with the 2′-phosphate group of NADPH.  相似文献   
7.
8.
Vitamin K is involved in the γ-carboxylation of the vitamin K-dependent proteins, and vitamin K epoxide is a by-product of this reaction. Due to the limited intake of vitamin K, its regeneration is necessary and involves vitamin K 2,3-epoxide reductase (VKOR) activity. This activity is known to be supported by VKORC1 protein, but recently a second gene, VKORC1L1, appears to be able to support this activity when the encoded protein is expressed in HEK293T cells. Nevertheless, this protein was described as being responsible for driving the vitamin K-mediated antioxidation pathways. In this paper we precisely analyzed the catalytic properties of VKORC1L1 when expressed in Pichia pastoris and more particularly its susceptibility to vitamin K antagonists. Vitamin K antagonists are also inhibitors of VKORC1L1, but this enzyme appears to be 50-fold more resistant to vitamin K antagonists than VKORC1. The expression of Vkorc1l1 mRNA was observed in all tissues assayed, i.e. in C57BL/6 wild type and VKORC1-deficient mouse liver, lung, and testis and rat liver, lung, brain, kidney, testis, and osteoblastic cells. The characterization of VKOR activity in extrahepatic tissues demonstrated that a part of the VKOR activity, more or less important according to the tissue, may be supported by VKORC1L1 enzyme especially in testis, lung, and osteoblasts. Therefore, the involvement of VKORC1L1 in VKOR activity partly explains the low susceptibility of some extrahepatic tissues to vitamin K antagonists and the lack of effects of vitamin K antagonists on the functionality of the vitamin K-dependent protein produced by extrahepatic tissues such as matrix Gla protein or osteocalcin.  相似文献   
9.
The present study characterizes the anticoagulant resistance mechanism in a Danish bromadiolone-resistant strain of Norway rats (Rattus norvegicus), with a Y139C VKORC1 mutation. We compared liver expression of the VKORC1 gene, which encodes a protein of the vitamin K 2,3-epoxide reductase complex, the NQO1 gene, which encodes a NAD(P)H quinone dehydrogenase and the Calumenin gene between bromadiolone-resistant and anticoagulant-susceptible rats upon saline and bromadiolone administration. Additionally, we established the effect of bromadiolone on the gene expression in the resistant and susceptible phenotype. Bromadiolone had no effect on VKORC1 and NQO1 expression in resistant rats, but induced significantly Calumenin expression in the susceptible rats. Calumenin expression was similar between the resistant and the susceptible rats upon saline administration but twofold lower in resistant rats after bromadiolone treatment. These results indicate that Danish bromadiolone resistance does not involve an overexpression of calumenin. Independent of the treatment, we observed a low VKORC1 expression in resistant rats, which in conjugation with the Y139C polymorphism most likely explains the low VKOR activity and the enhanced need for vitamin K observed in Danish resistant rats. Furthermore the bromadiolone resistance was found to be associated with a low expression of the NQO1 gene.  相似文献   
10.
The giant extracellular hemoglobin (erythrocruorin) from the earth worm (Lumbricus terrestris) has shown promise as a potential hemoglobin-based oxygen carrier (HBOC) in in vivo animal studies. An important beneficial characteristic of this hemoglobin (LtHb) is the large number of heme-based oxygen transport sites that helps overcome issues of osmotic stress when attempting to provide enough material for efficient oxygen delivery. A potentially important additional property is the capacity of the HBOC either to generate nitric oxide (NO) or to preserve NO bioactivity to compensate for decreased levels of NO in the circulation. The present study compares the NO-generating and NO bioactivity-preserving capability of LtHb with that of human adult hemoglobin (HbA) through several reactions including the nitrite reductase, reductive nitrosylation, and still controversial nitrite anhydrase reactions. An assignment of a heme-bound dinitrogen trioxide as the stable intermediate associated with the nitrite anhydrase reaction in both LtHb and HbA is supported based on functional and EPR spectroscopic studies. The role of the redox potential as a factor contributing to the NO-generating activity of these two proteins is evaluated. The results show that LtHb undergoes the same reactions as HbA and that the reduced efficacy for these reactions for LtHb relative to HbA is consistent with the much higher redox potential of LtHb. Evidence of functional heterogeneity in LtHb is explained in terms of the large difference in the redox potential of the isolated subunits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号