首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
  2016年   1篇
  2013年   1篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1986年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
Several years ago, prochlorophyte picoplankton were discovered in the N. Atlantic. They have since been found to be abundant within the euphotic zone of the world's tropical and temperate oceans. The cells are extremely small, lack phycobiliproteins, and contain divinyl chlorophyll a and b as their primary photosynthetic pigments. Phylogenies constructed from DNA sequence data indicate that these cells are more closely related to a cluster of marine cyanobacteria than to their prochlorophyte relatives Prochlorothrix and Prochloron. Several strains of this organism have recently been brought into culture, and herewith are given the name Prochlorococcus marinus.  相似文献   
2.
Abstract: Laboratory cultures of marine Synechococcus sp. WH 7803 were grown under conditions of restricted iron availability. The culture medium was adjusted to restrict iron availability: (i) by adding the iron chelator EDDA; (ii) by omitting iron; and (iii) by omitting both iron and EDTA. An adaptive response was observed to these iron-restricted conditions, including a decrease in cellular phycoerythrin and synthesis of a 36 kDa polypeptide in [35S]methionine radiolabelled whole cell lysates separated by SDS-PAGE. The polypeptide was synthesized within 48 h of transferring exponential phase cells to the iron-restricted medium. The protein was localized to the cell membranes and not the cytoplasmic fraction.  相似文献   
3.
A quantitative PCR (QPCR) assay based on the use of SYBR Green I was developed to assess the abundance of specific groups of picoeukaryotes in marine waters. Six primer sets were designed targeting four different taxonomic levels: domain (Eukaryota), division (Chlorophyta), order (Mamiellales) and genus (Bathycoccus, Micromonas, and Ostreococcus). Reaction conditions were optimized for each primer set which was validated in silico, on agarose gels, and by QPCR against a variety of target and non-target cultures. The approach was tested by estimating gene copy numbers for Micromonas, Bathycoccus, and Ostreococcus in seawater samples to which cultured cells were added in various concentrations. QPCR was then used to determine that rRNA gene (rDNA) copy number varied from one to more than 12,000 in 18 strains of phytoplankton. Finally, QPCR was applied to environmental samples from a Mediterranean Sea coastal site and the results were compared to those obtained by Fluorescent in situ hybridization (FISH). The data obtained demonstrate that Chlorophyta and more specifically Mamiellales were important in these waters, especially during the winter picoplankton bloom. The timing of major abundance peaks of the targeted species was similar by QPCR and FISH. When used in conjunction with other techniques such as FISH or gene clone libraries, QPCR appears as very promising to quickly obtain data on the ecological distribution of important phytoplankton groups. Data interpretation must take into account primer specificity and the varying rRNA gene copy number among eukaryotes.  相似文献   
4.
Picoplankton bacteria from a North Sea water sample were cultured under a variety of different conditions (nutrients, temperature, light, agitation, adhesion). Fluorescent in situ hybridization (FISH) analysis of the enrichments showed complex communities which were dominated by gamma-Proteobacteria or beta-Proteobacteria, followed by alpha-Proteobacteria and bacteria from the Cytophaga/Flavobacterium/Bacteroides (CFB) cluster. Among 410 isolates, a high degree of diversity was found, both with respect to colony color and morphology and with respect to genetic diversity. Isolated bacteria were classified into the main taxa by a special PCR approach, termed signature PCR (SIG-PCR). It was based on an oligo primer mixture targeting 16S rDNA which yielded PCR products of taxon-specific lengths. Again, gamma-Proteobacteria dominated (48%), followed by alpha-Proteobacteria (20%). beta-Proteobacteria were rarely isolated (eight strains of 410). The CFB cluster comprised the second largest phylum (14%), and 7.5% of all isolates belonged to the high-GC Gram-positives. Thus, isolated bacteria were representative of enrichment communities with the exception of the beta-Proteobacteria, which were detected in high abundance in certain enrichments by FISH but not isolated, and the high-GC Gram-positives, which were cultivated but not detected by FISH. A genomic fingerprinting technique, randomly amplified polymorphic DNA, showed that among 58 CFB isolates only 18 identical genotypes were found, and among the 84 alpha-Proteobacteria only eight identical genotypes were present. The data show the enormous diversity of cultivated bacteria from picoplankton enrichment cultures of one North Sea water sample, which is only a small fraction of the total picoplankton community.  相似文献   
5.
Brown tide, a bloom of the picoplankter Aureococcus anophagefferens, first appeared in eastern Long Island (Suffolk County) waters in the late spring of 1985, at about the same time it emerged, although to a lesser degree, in Narraganset Bay, RI. Since then, it has recurred sporadically in Suffolk County, and blooms have been reported in New Jersey, Delaware, Maryland, and only one other area of the world, Saldanha Bay, South Africa. Bloom initiation and maintenance within Suffolk County appear to be related to A. anophagefferens’ ability to use dissolved organic nitrogen (DON) during periods of limited dissolved inorganic nitrogen (DIN) availability. Factors controlling DIN availability include groundwater influx related to meteorological conditions, introduction of septic leachate from on-site wastewater treatment systems, and biological removal. The complexity of bloom dynamics is illustrated by a cascade of events in Great South Bay involving shellfish clearing rates, a macroalgal bloom, and microbial decomposition.  相似文献   
6.
7.
Abundance and biomass of pico- (<2 μm) and nanoplankton (2–20 μm) were investigated in relation to hydrography in Kongsfjorden, Svalbard (79°N, 12°E) during late summer 2006. Autotrophic and heterotrophic picoplankton abundance ranged from 0.1 × 106 to 35.2 × 106 cells L−1 and from 0.4 × 106 to 20.3 × 106 cells L−1, respectively. The highest number of bacteria in the entire water column was recorded at station 2 at 10 m (22.3 × 108 cells L−1); the lowest concentration was observed at station 1 (6.0 × 108 cells L−1). The abundance of autotrophic and heterotrophic nanoplankton varied from 0.4 × 105 cells L−1 to 46 × 105 cells L−1 and from 0.3 × 106 to 9.1 × 106 cells L−1, respectively. Our results demonstrated that heterotrophic nanoflagellates and bacteria in Kongsfjorden microbial community were relatively important. The structure of plankton communities integrated with environmental variables could act as indicators of the variability of the inflow of Atlantic Water into Kongsfjorden.  相似文献   
8.
In previous experiments, rates of picoplankton uptake into coral communities were controlled by sponge and ascidian biomass. Those experimental communities, however, had relatively few sponges and ascidians. In contrast, turbulent transport of particles into the momentum boundary layers can limit particle removal by layered, dense bivalve populations. In this study, the role of water velocity in controlling particulate nutrient-uptake by rubble communities was evaluated, in which the rubble was more completely covered by sponges and ascidians. Picoplankton uptake was proportional to concentration over a range of cell concentrations from 3.0 × 105 to 9.5 × 105 heterotrophic bacteria ml−1, 4.1 × 104 to 1.2 × 105 Synechococcus sp. ml−1 and 6.3 × 103 to 1.8 × 104 picoeukaryotes ml−1. The first-order uptake rate constants, normalized to sponge and ascidian biomass, were similar to previous experimental communities. Picoplankton uptake increased 1.6-fold over a 7-fold change in water velocity, 0.05–0.35 m s−1. This increase has been interpreted as a result of higher turbulent transport within the rough coral community (canopy), as indicated by a 1.6-fold increase in the bottom friction with increasing water velocity.  相似文献   
9.
Autotrophic picoplankton communities were examined in eleven oligotrophic lakes from a broad geographic region of western Canada, representing a variety of physico-chemical and biological conditions. During our study, several of the lakes were treated with additions of inorganic nitrogen and phosphorus fertilizers. Picoplankton communities in most lakes were dominated (>70%) by unicellular or colonial coccoid cyanobacteria, provisionally identified by morphological and autofluorescence properties as Synechococcus. Also common in some lakes were red-fluorescing cyanobacteria and Chlorella-like eucaryotes. Autotrophic picoplankters contributed from 36-63% to total chlorophyll, from >2-26% to total phytoplankton carbon, and from 29–53% to total photosynthesis. Average populations ranged from >5-10,000 cells·ml−1 in winter and early spring to 65-75,000 cells · ml−1 in summer and fall. Peak densities in most lakes occurred in August-September and most populations were within the epilimnion or metalimnion/hypolimnion boundary. Subsurface peaks were prevalent only in untreated, strongly stratified lakes. Eucaryotic picoplankters became dominant in acidic (pH < 6.2), humic lakes. Colonial picoplankters were more common in more productive interior lakes in August, and though present, were uncommon in coastal systems. Picoplankton populations exhibited large increases under ice in a Yukon lake, and their abundance and seasonal distribution showed little relation to temperature or to light. Fertilization of lakes resulted in picoplankton population increases (>2x) and the elimination of subsurface peaks. Nutrients were considered to be one of the major factors controlling population abundance in these oligotrophic lakes with average pH < 6.5.  相似文献   
10.
Standing stocks of ciliate plankton and its prey candidates, both picoplankton and nanoplankton, were investigated in spring in the East China Sea. The former was 1.36 × 105–1.54 × 108 μm3 l−1 in biovolume, and the latter was 5.33 × 106–1.11 × 108 μm3 l−1. The biovolume ratio of ciliate plankton to prey candidates ranged from 1.31 × 10−2 to 2.00 × 100; it was larger in abundant prey conditions and smaller in sparse preys. Making some plausible assumptions about physiological activity on both organisms, every ratio meet the quantitative restriction that prey production should be equal to or larger than ciliate consumption. However, prey candidates would be so sparsely distributed that ciliate plankton could not capture sufficient prey organisms in its random filter-feeding manner. Even though planktonic ciliates must have some extraordinary mechanisms to capture preys efficiently, this quantitative imbalance might be one of the reasons for decreasing ciliate/prey ratio in sparse prey conditions. Handling editor: K. Martens  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号