首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1987年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Two properties of phytotropins, their ability to bind to 1-N-naphthylphthalamic acid (NPA) receptors located on microsomal vesicles isolated from Cucurbita pepo L. hypocotyls, and to stimulate auxin (indol-3-yl acetic acid, IAA) accumulation into such vesicles by blocking its efflux from them, were assessed in double labelling experiments using [2,3,4,5-3H]1-N-naphthylphthalamic acid and 3-indolyl-[2-14C]acetic acid. Two sites of differing affinities and activities on IAA accumulation were found. 1-N-Naphthylphthalamic acid was found to have high affinity (KD at 10-8mol·l-1) for one site and low affinity (KD at 10-6 mol·l-1) for the other, whereas 2-(1-pyrenoyl)benzoic acid displaced NPA with high efficiency (KD below 10-8 mol·l-1) from both sites. Other phytotropins had intermediate affinities for either site. Occupation of the site with low affinity for NPA stimulated auxin accumulation, while occupation of the high-affinity site with a phytotropin did not interfere with auxin accumulation into vesicles.Abbreviations IAA Indol-3-yl acetic acid - NPA 1-N-naphthylphthalamic acid - PBA 2-(1-pyrenoyl)benzoic acid - TIBA 2,3,5-triiodobenzoic acid W.M. was supported in part by an allowance from CSIRO and in part by a fellowship of the Deutsche Forschungsgemeinschaft; he acknowledges the friendly hospitality of the CSIRO Division of Plant Industry. The authors thank R. Hertel (Freiburg) for valuable discussion.  相似文献   
2.
The characteristics of transmembrane transport of 14C-labelled indol-3yl-acetic acid ([1-14C]IAA) were compared in Chlorella vulgaris Beij., a simple unicellular green alga, and in Chara vulgaris L., a branched, multicellular green alga exhibiting axial polarity and a high degree of cell and organ specialization. In Chara thallus cells, three distinguishable trans-plasmamembrane fluxes contributed to the net uptake of [1-14C]-IAA from an external solution, viz.: a non-mediated, pH-sensitive influx of undissociated IAA (IAAH); a saturable influx of IAA; and a saturable efflux of IAA. Both saturable fluxes were competitively inhibited by unlabelled IAA. Association of [3H]IAA with microsomal preparations from Chara thallus tissue was competitively inhibited by unlabelled IAA. Results indicated that up-take carriers occurred in the membranes at a much higher density than efflux carriers. The efflux component of IAA net uptake by Chara was not affected by several phytotropins (N-1-naphthylphthalmic acid, NPA; 2-(1-pyrenoyl)benzoic acid; and 5-(2-carboxyphenyl)-3-phenylpyrazole), which are potent non-competitive inhibitors of specific auxin-efflux carriers in more advanced plant groups, and no evidence was found for a specific association of [3H]NPA with Chara microsomal preparations. It was concluded that Chara lacked phytotropin receptors. Net uptake of [1-14C]IAA also was unaffected by 2,3,5-triiodobenzoic acid except at concentrations ( 10–1 mol · m–3) high enough to depress cytoplasmic pH (determined by uptake of 5,5-dimethyloxazolidine-2,4-dione). Chlorella cells accumulated [1-14C]IAA from an external solution by pH-sensitive diffusion of IAA across the plasma membrane and anion (IAA) trapping, but no evidence was found in Chlorella for the occurrence of IAA carriers. These results indicate that carrier systems capable of mediating the transmembrane transport of auxins appeared at a very early stage in the evolution of green plants, possibly in association with the origin of a differentiated, multicellular plant body. Phytotropin receptors evolved independently of the carriers.Abbreviations CPP 5-(2-carboxyphenyl)-3-phenylpyrazole - DMO 5,5-dimethyloxazolidine-2,4-dione - IAA indol-3yl-acetic acid - NPA N-1-naphthylphthalamic acid - PBA 2-(1-pyrenoyl)benzoic acid - TIBA 2,3,5-triiodobenzoic acid We thank the Nuffield Foundation for the award of an Undergraduate Research Bursary to J.E.D.-F., Dr. G.F. Katekar, C.S.I.R.O., Canberra, Australia for generous gifts of phytotropins, and Mrs. R.P. Bell for technical support.  相似文献   
3.
Treatment of etiolated zucchini (Cucurbita pepo L.) hypocotyl tissue with sub-micromolar concentrations of the cationophore monensin rapidly (<20 min) inhibited the transport catalytic activity of the specific auxin-anion efflux carrier and reduced the inhibition of this carrier by the phytotropin N-1-naphthylphthalamic acid (NPA). Monensin inhibited the basipetal polar transport of indol-3yl-acetic acid (IAA) in long (30 mm) zucchini segments. At concentrations lower than 10–5 mol·dm–3 monensin did not affect uptake of the pH probe [2-14C]5,5-dimethyloxazolidine-2,4-dione (DMO) or that of the membrane-potential probe tetra[14C-phenyl]phosphonium bromide (TPP+), did not affect the response of IAA net uptake to external Ca2+ concentration and did not alter the metabolism of IAA. It was concluded that low concentrations of monensin inhibit transport through the Golgi apparatus of auxin efflux carrier protein and that the efflux carriers turn over very rapidly in the plasma membrane. Monensin pretreatment did not affect the saturable binding of [3H]NPA to microsomal membranes, indicating that the auxin-efflux catalytic sites and the NPA-binding sites are located on separate proteins. At higher concentrations (10–5 mol·dm–3) monensin inhibited both mediated uptake and mediated efflux components of IAA transport. This effect was at least in part attributable to perturbation by monensin of the driving forces for mediated uptake since high concentrations of monensin also reduced the uptake of DMO and TPP+.Abbreviations CH cycloheximide - DMO 5,5-dimethyloxazolidine-2,4-dione - MDMP 2-(4-methyl-2,6-dinitroanlilino)N-methyl-propionamide - NPA N-1-naphthylphthalamic acid - TPP+ tetraphenylphosphonium ion We thank Mrs. R.P. Bell for technical assistance and Drs. G.F. Katekar and M.A. Venis for generous gifts of NPA. S.W. was supported by the U.K. Science and Engineering Research Council.  相似文献   
4.
When membrane vesicles from maize (Zea mays L.) coleoptiles are extracted at high buffer strength, a pH-driven, saturable association of [14C] indole-3-acetic acid is found, similar to the in-vitro auxin-transport system previously described for Cucurbita hypocotyls. The phytotropins naphthylphthalamic acid and pyrenoylbenzoic acid increase net uptake, pressumably by inhibiting the auxin-efflux carrier.Abbreviations IAA indole-3-acetic acid - ION3 ionophore mixture of carbonylcyanide-3-chlorophenylhydrazone, nigericin and valinomycin - 1-NAA, 2-NAA 1-, 2-naphthaleneacetic acid - NPA 1-N-naphthylphthalamic acid - PBA 2-(1-pyrenoyl)benzoic acid  相似文献   
5.
Muday GK  Lomax TL  Rayle DL 《Planta》1995,195(4):548-553
Roots of the tomato (Lycopersicon esculentum, Mill.) mutant diageotropica (dgt) exhibit an altered phenotype. These roots are agravitropic and lack lateral roots. Relative to wild-type (VFN8) roots, dgt roots are less sensitive to growth inhibition by exogenously applied IAA and auxin transport inhibitors (phytotropins), and the roots exhibit a reduction in maximal growth inhibition in response to ethylene. However, IAA transport through roots, binding of the phytotropin, tritiated naphthylphthalamic acid ([3H]NPA), to root microsomal membranes, NPA-sensitive IAA uptake by root segments, and uptake of [3H]NPA into root segments are all similar in mutant and wild-type roots. We speculate that the reduced sensitivity of dgt root growth to auxin-transport inhibitors and ethylene is an indirect result of the reduction in sensitivity to auxin in this single gene, recessive mutant. We conclude that dgt roots, like dgt shoots, exhibit abnormalities indicating they have a defect associated with or affecting a primary site of auxin perception or action.Abbreviations BCA bicinchoninic acid - IAA indole 3-acetic acid - dgt diageotropica - IC50 concentration for 50% inhibition of growth - NPA N-1-naphthylphthalamic acid - SCB-1 semicarbazone 1 This research was supported by grants from Sandoz Agro, Inc. (G.K.M), the National Aeronautics and Space Administration (NASA) and the National Science Foundation (T.L.L), and NASA (D.L.R.).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号