首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1273篇
  免费   8篇
  国内免费   18篇
  1299篇
  2023年   4篇
  2022年   3篇
  2021年   3篇
  2020年   1篇
  2019年   8篇
  2018年   11篇
  2017年   7篇
  2016年   9篇
  2015年   22篇
  2014年   60篇
  2013年   88篇
  2012年   71篇
  2011年   93篇
  2010年   91篇
  2009年   44篇
  2008年   29篇
  2007年   42篇
  2006年   28篇
  2005年   37篇
  2004年   31篇
  2003年   40篇
  2002年   27篇
  2001年   10篇
  2000年   15篇
  1999年   14篇
  1998年   17篇
  1997年   12篇
  1996年   9篇
  1995年   17篇
  1994年   14篇
  1993年   11篇
  1992年   12篇
  1991年   8篇
  1990年   12篇
  1989年   11篇
  1988年   18篇
  1987年   14篇
  1986年   13篇
  1985年   18篇
  1984年   49篇
  1983年   66篇
  1982年   64篇
  1981年   58篇
  1980年   44篇
  1979年   38篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
排序方式: 共有1299条查询结果,搜索用时 0 毫秒
1.
Dehydration reduces the main phase transition pressure of phospholipids. An analysis based on the Gibbs-Duhem equation shows how the shift of the transition pressure is correlated to the hydration pressure.By using Fourier transform infrared (FT-IR) spectroscopy we determined the hydration-dependent phase transition pressure. The application of our new approach gives hydration pressure values which agree with the values obtained with the osmotic stress method.  相似文献   
2.
3.
The capsular polysaccharide (CPS) of Staphylococcus aureus strain Smith was labelled by growth of bacteria in the presence of radioactive N-acetylglucosamine and was separated from labelled cell wall components by affinity chromatography on wheat germ agglutinin following dissolution of the cells by lysostaphin. The products were partially characterised chemically and immunochemically. Similar labelled components were found in the culture fluid during growth. In a pulse-chase experiment, cell-bound CPS was released continuously into the culture fluid at the same rate as cell wall turnover and there was no evidence of direct excretion of CPS.  相似文献   
4.
The effects of short- and long-term ethanol administration to rats on basal levels and formation of prostacyclin (PGI2) measured as 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha), and on lipid class content and fatty acid composition of isolated brain microvessels (BMV) were studied. After acute treatment (2 h, at the peak of plasma ethanol concentration) basal 6-keto-PGF1 alpha levels in BMV and release on incubation were reduced to 50% of control values. After chronic administration (15 days), PGI2 release was reduced to about 40% of control values, without changes in basal levels. Total lipid, phospholipid, and cholesterol levels in BMV, measured after prolonged administration of alcohol, were not modified. Also, only minor changes in the fatty acid composition of individual phospholipid classes were detected. The observed reduction of PGI2 synthesis in BMV thus could not be related to changes of the fatty acid precursor pool in the preparation. Precursor release and/or the biosynthetic pathways may be affected by ethanol administration.  相似文献   
5.
The effect of the cerebral 5-hydroxytryptamine system on the turnover of striatal 3,4-dihydroxyphenyl-ethylamine (dopamine) was investigated by measuring the level of dopamine and one of its metabolites in rats depleted of cerebral 5-hydroxytryptamine or treated with a 5-hydroxytryptamine receptor blocker. Treatment with p-chlorophenylalanine induced, in addition to a reduction in striatal 5-hydroxytryptamine and 5-hydroxyindol-3-ylacetic acid, an increase in the striatal concentration of dopamine, a diminution in the concentration of homovanillic acid in the same cerebral area, and a reduction in the rise of this acid after the administration of a butyrophenone derivative or tetrabenazine. Treatment with methysergide also reduced the increase of homovanillic acid induced by the butyrophenone. When probenecid was given to rats treated with p-chlorophenylalanine, homovanillic acid failed to accumulate, whereas the accumulation of 5-hydroxyindol-3-ylacetic acid was unaffected. The decay of dopamine after alpha-methyl-p-tyrosine administration was normal for the first 6 h but was later reduced in rats given p-chlorophenylalanine or methysergide. The results suggest that the lack of activation of 5-hydroxytryptamine receptors leads to a reduction in the turnover of dopamine in the nigrostriatal pathway.  相似文献   
6.
Peroxidation of membrane lipids has been hypothesized to play a key role in various types of tissue degeneration and pathology. Lipid peroxides are formed when oxygen reacts with an unsaturated fatty acid chain. Virtually all of the unsaturated fatty acids in biological systems are bound by ester linkages in phospholipids or triglycerides. Phospholipid and triglyceride peroxides are primary products of lipid peroxidation and have rarely been measured. Most of the commonly used methods for detection of lipid peroxidation are based on detection of malondialdehyde or other chemical species that are derived from oxidized fatty acids. This review presents an overview of recently developed methods aimed at identifying and measuring oxidized phospholipids and triglycerides which are direct evidence of the occurrence of lipid peroxidation in vivo.  相似文献   
7.
Phenyl di-n-pentylphosphinate is a reasonably stable easily synthesized inhibitor of neuropathy target esterase (NTE) with low anticholinesterase activity. Like phenylmethylsulphonyl fluoride it protects hens against neuropathic effects of compounds such as diisopropylphosphorofluoridate. At intervals up to 15 days after dosing hens (10 mg/kg s.c. to inhibit 90% NTE) assays were made of catalytically active and of phosphinylated NTE in autopsy tissue. The sum of these components was always within the range of catalytic activity in undosed controls. However, the half-life of reappearance of active NTE was 2.07 days +/- 0.13 (SD, n = 6) for brain and 3.62 days +/- 0.23 (SD, n = 6) for spinal cord--shorter than after dosing with phenylmethylsulphonyl fluoride. It is proposed that: (1) The physiological turnover mechanism cannot distinguish between catalytically active and di-n-pentylphosphinylated NTE although initiation of organophosphate-induced delayed polyneuropathy might involve recognition of aged di-alkyl-phosphorylated NTE as "foreign". (2) The short half-lives indicate a slow spontaneous dephosphinylation of inhibited NTE occurs in vivo as well as de novo synthesis. The difference in half-lives for brain and spinal cord NTE may be due to different rates of synthesis de novo or (more likely) to different rates of spontaneous reactivation of the inhibited NTE in the two tissues.  相似文献   
8.
We have prepared liposomes containing methotrexate-γ-dimyristoylphosphatidylethanolamine (MTX-DMPE liposomes), to which protein A was covalently coupled, permitting specific association of these liposomes in vitro with murine cells preincubated with relevant protein A-binding monoclonal antibodies. In the absence of antibody the presence of externally-oriented methotrexate (MTX) in MTX-DMPE liposomes did not result in greater binding to cells than liposomes made without MTX-γ-DMPE. Derivation of methotrexate with phospholipid permits enhanced drug-liposome association. These liposomes are more resistant than conventional liposomes to repeated cycles of freezing and thawing. MTX-DMPE liposomes are comparable to antibody-targeted liposomes made with encapsulated water-soluble methotrexate both with respect to specific binding to target cells and drug effect. The inhibitory effects off MTX-liposomes, as well as free MTX, were reversible by either thiamin pyrophosphate (Tpp) or N5-formyltetrahydrofolate (F-THF), while the effects of MTX-DMPE liposomes were reversed only by N5-formyltetrahydrofolate. This suggests that the toxicity of non-targeted MTX-liposomes may be due to leakage of the encapsulated MTX. The absence of an effect of thiamin pyrophosphate on non-targeted MTX-DMPE liposomes indicates that they do not enter into the cell via the normal folate transport system.  相似文献   
9.
In adult rats, a significant portion of brain ethanolamine glycerophospholipids are synthesized by a pathway involving phosphatidylserine decarboxylase, a mitochondrial enzyme. We have now examined whether this enzyme plays a particularly prominent role during development. Activities for both phosphatidylserine decarboxylase and succinate dehydrogenase (another mitochondrial enzyme) were determined in brain homogenates from rats 5 days of age to adulthood. Succinate dehydrogenase activity, expressed on a per unit brain protein basis, increased markedly during development. This pattern has been reported previously and is as expected from the postnatal increase in oxidative metabolism. In contrast, phosphatidylserine decarboxylase activity decreased 40% from 5 to 30 days of age. The apparent Km for brain phosphatidylserine decarboxylase was 85 microM in both young (8- and 20-day-old) and adult animals. Parallel studies in vivo were carried out to determine the contribution of the phosphatidylserine decarboxylase pathway, relative to pathways utilizing ethanolamine directly, to the synthesis of brain ethanolamine glycerophospholipids. Animals were injected intracranially with a mixture of L-[G-3H]serine and [2-14C]ethanolamine and incorporation into the base moieties of the phospholipids determined. The 3H/14C ratio of ethanolamine glycerophospholipids decreased about 50% during development. Our studies in vitro and in vivo both suggest that phosphatidylserine decarboxylase plays a significant role in the synthesis of brain ethanolamine glycerophospholipids at all ages, although it is relatively more prominent early in development.  相似文献   
10.
Cerebrospinal fluid (CSF) was removed at a constant flow rate of 1 microliter/min from the third ventricle of anesthetized rats. Every 15 min, CSF dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) concentrations were determined by direct injection of CSF into a liquid chromatographic system coupled with electrochemical detection. Mean CSF concentrations of DOPAC, HVA, and 5-HIAA were 1.29 microM, 0.88 microM, and 2.00 microM, respectively. In order to determine the turnover rates of dopamine (DA) and serotonin, experiments using monoamine oxidase (MAO) inhibition were performed. Tranylcypromine (20 mg/kg i.p.) induced a sharp exponential decrease of CSF DOPAC, HVA, and 5-HIAA, with respective half-lives of 15.60 min, 16.91 min, and 77.23 min. Their respective turnover rates were 3.74, 2.22, and 1.18 nmol X ml-1 X h-1. m-Hydroxybenzylhydrazine (NSD-1015, 100 mg/kg i.p.) and monofluoromethyl-DOPA (100 mg/kg i.p.), two decarboxylase inhibitors, induced a slow exponential decrease of all three CSF metabolites. alpha-Methyl-p-tyrosine (250 mg/kg i.p.) also induced a slow exponential decrease of DOPAC and HVA. These decreases of CSF DOPAC and HVA induced by DA synthesis inhibitors may reflect the turnover of DA in vivo. Haloperidol (0.5 mg/kg i.p.) considerably enhanced CSF DOPAC and HVA without affecting 5-HIAA, confirming that dopaminergic receptors modulate DA neurotransmission in vivo. Haloperidol administered 1.5 h after NSD-1015 did not increase DOPAC and HVA, in contrast to reserpine (5 mg/kg i.p.) injected under the same conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号