首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2014年   1篇
  2012年   1篇
  2007年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
PhaA from Ralstonia eutropha (RePhaA) is the first enzyme in the polyhydroxyalbutyrate (PHB) biosynthetic pathway and catalyzes the condensation of two molecules of acetyl-CoA to acetoacetyl-CoA. To investigate the molecular mechanism underlying PHB biosynthesis, we determined the crystal structures of the RePhaA protein in apo- and CoA-bound forms. The RePhaA structure adopts the type II biosynthetic thiolase fold forming a tetramer by means of dimerization of two dimers. The crystal structure of RePhaA in complex with CoA revealed that the enzyme contained a unique Phe219 residue, resulting that the ADP moiety binds in somewhat different position compared with that bound in other thiolase enzymes. Our study provides structural insight into the substrate specificity of RePhaA. Results indicate the presence of a small pocket near the Cys88 covalent catalytic residue leading to the possibility of the enzyme to accommodate acetyl-CoA as a sole substrate instead of larger acyl-CoA molecules such as propionyl-CoA. Furthermore, the roles of key residues involved in substrate binding and enzyme catalysis were confirmed by site-directed mutagenesis.  相似文献   
2.
The increasing effect of non-degradable plastic wastes is a growing concern. Polyhydroxyalkanoates (PHAs), macromolecule-polyesters naturally produced by many species of microorganisms, are being considered as a replacement for conventional plastics. Unlike petroleum-derived plastics that take several decades to degrade, PHAs can be completely bio-degraded within a year by a variety of microorganisms. This biodegradation results in carbon dioxide and water, which return to the environment. Attempts based on various methods have been undertaken for mass production of PHAs. Promising strategies involve genetic engineering of microorganisms and plants to introduce production pathways. This challenge requires the expression of several genes along with optimization of PHA synthesis in the host. Although excellent progress has been made in recombinant hosts, the barriers to obtaining high quantities of PHA at low cost still remain to be solved. The commercially viable production of PHA in crops, however, appears to be a realistic goal for the future.  相似文献   
3.
Soto G  Alleva K  Amodeo G  Muschietti J  Ayub ND 《Gene》2012,503(1):165-176
Aquaporins (AQPs) represent a family of channel proteins that transport water and/or small solutes across cell membranes in the three domains of life. In all previous phylogenetic analysis of aquaporin, trees constructed using proteins with very low amino acid identity (<15%) were incongruent with rRNA data. In this work, restricting the evolutionary study of aquaporins to proteins with high amino acid identity (>25%), we showed congruence between AQPs and organismal trees. On the basis of this analysis, we defined 19 orthologous gene clusters in flowering plant species (3 PIP-like, 7 TIP-like, 6 NIP-like and 3 SIP-like). We described specific conserved motifs for each subfamily and each cluster, which were used to develop a method for automatic classification. Analysis of amino acid identity between orthologous monocotyledon and dicotyledon AQPs from each cluster, suggested that PIPs are under high evolutionary constraint. The phylogenetic analysis allowed us the assignment of orthologous aquaporins for very distant animal lineages (tetrapods-fishes). We also demonstrated that the location of all vertebrate AQPs in the ortholog clusters could be predicted by comparing their amino acid identity with human AQPs. We defined four AQP subfamilies in animals: AQP1-like, AQP8-like, AQP3-like and AQP11-like. Phylogenetic analysis showed that the four animal AQPs subfamilies are related with PIP-like, TIP-like, NIP-like and SIP-like subfamilies, respectively. Thus, this analysis would allow the prediction of individual AQPs function on the basis of orthologous genes from Arabidopsis thaliana and Homo sapiens.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号