首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2006年   1篇
  2004年   1篇
  1991年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Previous studies with the multidrug-resistant human HL60 cell line have shown a 3–4-fold decrease in VP-16 accumulation compared to the sensitive cell line, while the degree of resistance to VP-16 was 300-fold, indicating that other mechanisms of resistance are also operative. Since VP-16 has been shown to interfere with topoisomerase II activity, we have evaluated VP-16-dependent DNA strand break formation in the drug-sensitive and -resistant HL60 cells. Studies reported here show that the drug-resistant HL60 cells are extremely resistant to VP-16-dependent DNA cleavage compared to the sensitive cells. This decrease in DNA cleavage in the of VP-16 was, in part, related to a 2–3-fold decrease in both the amount and activity of topisomerase II in the resistant cell line compared to the sensitive cells. Nuclei from the resistant cell line were markedly more resistant to VP-16-dependent DNA cleavage than the WT cell nuclei. Interestingly, WT nuclei were found to be relatively more resistant to VP-16-induced DNA cleavage than the intact WT cells. Addition of WT cytosolic proteins to WT nuclei, however, significantly stimulated VP-16-dependent DNA cleavage and slightly increased DNA cleavage in resistant cell nuclei. In contrast, cytosolic proteins from the resistant cells had no effect on DNA cleavage in nuclei isolated from either cell line. These observations indicate that a decrease in the amount and activity of topoisomerase II in resistant HL60 cells translates into a decrease in VP-16-dependent DNA breakage and contributes to the resistance to VP-16. Furthermore, the cytosolic fraction from WT cells contains some factor, not present in the resistant cells, which is necessary for the maximal drug-induced DNA cleavage.  相似文献   
2.
3.
5,6-Dimethylxanthenone-4-acetic acid (DMXAA) is a potent cytokine inducer, with a bioavailability of >70% in the mouse. The aim of this study was to develop and validate HPLC methods for the determination of DMXAA and DMXAA acyl glucuronide (DMXAA-G) in the human intestinal cell line Caco-2 monolayers. The developed HPLC methods were sensitive and reliable, with acceptable accuracy (85-115% of true values) and precision (intra- and inter-assay CV < 15%). The total running time was within 6.8 min, with acceptable separation of the compounds of interest. The limit of quantitation (LOQ) values for DMXAA and DMXAA-G were 14.2 and 24 ng/ml, respectively. The validated HPLC methods were applied to examine the epithelial transport of DMXAA and DMXAA-G by Caco-2 monolayers. The permeability coefficient (Papp) values (overall mean +/- S.D., n = 3-9) of DMXAA over 10-500 microM were independent of concentration for both apical (AP) to basolateral (BL) (4.0 +/- 0.4 x 10(-5)cm/s) and BL-AP (4.3 +/- 0.5 x 10(-5)cm/s) transport, and of similar magnitude in either direction, with net efflux ratio (Rnet) values of 1-1.3. However, the Papp values for the BL to AP transport of DMXAA-G were significantly greater than those for the AP to BL transport, with Rnet values of 17.6, 6.7 and 4.5 at 50, 100 and 200 microM, respectively. Further studies showed that the transport of DMXAA-G was Na+- and energy-dependent, and inhibited by MK-571 [a multidrug resistance associated protein (MRP) 1/2 inhibitor], but not by verapamil and probenecid. These data indicate that the HPLC methods for the determination of DMXAA and DMXAA-G in the transport buffer were simple and reliable, and the methods have been applied to the transport study of both compounds by Caco-2 monolayers. DMXAA across Caco-2 monolayers was through a passive transcellular process, whereas the transport of DMXAA-G was mediated by MRP1/2.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号