首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   4篇
  国内免费   1篇
  138篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   13篇
  2014年   18篇
  2013年   11篇
  2012年   11篇
  2011年   23篇
  2010年   6篇
  2009年   10篇
  2008年   8篇
  2007年   7篇
  2006年   9篇
  2005年   5篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
排序方式: 共有138条查询结果,搜索用时 15 毫秒
1.
Typical 2-Cys peroxiredoxins are required to remove hydrogen peroxide from several different cellular compartments. Their activity can be regulated by hyperoxidation and consequent inactivation of the active-site peroxidatic cysteine. Here we developed a simple assay to quantify the hyperoxidation of peroxiredoxins. Hyperoxidation of peroxiredoxins can only occur efficiently in the presence of a recycling system, usually involving thioredoxin and thioredoxin reductase. We demonstrate that there is a marked difference in the sensitivity of the endoplasmic reticulum-localized peroxiredoxin to hyperoxidation compared with either the cytosolic or mitochondrial enzymes. Each enzyme is equally sensitive to hyperoxidation in the presence of a robust recycling system. Our results demonstrate that peroxiredoxin IV recycling in the endoplasmic reticulum is much less efficient than in the cytosol or mitochondria, leading to the protection of peroxiredoxin IV from hyperoxidation.  相似文献   
2.
The dynamics of redox metabolism necessitate cellular strategies for sensing redox changes and for responding to them. A common mechanism for receiving and transmitting redox changes is via reversible modifications of protein cysteine residues. A plethora of cysteine modifications have been described, including sulfenylation, glutathionylation, and disulfide formation. These post-translational modifications have the potential to alter protein structure and/or function and to modulate cellular processes ranging from division to death and from circadian rhythms to secretion. The focus of this thematic minireview series is cysteine modifications in response to reactive oxygen and nitrogen species.  相似文献   
3.
An NADPH thioredoxin reductase C was co-purified with a 2-Cys peroxiredoxin by the combination of anion exchange chromatography and electroelution from gel slices after native PAGE from a thermophilic cyanobacterium Thermosynechococcus elongatus as an NAD(P)H oxidase complex induced by oxidative stress. The result provided a strong evidence that the NADPH thioredoxin reductase C interacts with the 2-Cys peroxiredoxin in vivo. An in vitro reconstitution assay with purified recombinant proteins revealed that both proteins were essential for an NADPH-dependent reduction of H2O2. These results suggest that the reductase transfers the reducing power from NADPH to the peroxiredoxin, which reduces peroxides in the cyanobacterium under oxidative stress. In contrast with other NADPH thioredoxin reductases, the NADPH thioredoxin reductase C contains a thioredoxin-like domain in addition to an NADPH thioredoxin reductase domain in the same polypeptide. Each domain contains a conserved CXYC motif. A point mutation at the CXYC motif in the NADPH thioredoxin reductase domain resulted in loss of the NADPH oxidation activity, while a mutation at the CXYC motif in the thioredoxin-like domain did not affect the electron transfer, indicating that this motif is not essential in the electron transport from NADPH to the 2-Cys peroxiredoxin.  相似文献   
4.
Peroxiredoxins (Prxs) detoxify peroxides and modulate H2O2-mediated cell signaling in normal and numerous pathophysiological contexts. The typical 2-Cys subclass of Prxs (human Prx1–4) utilizes a Cys sulfenic acid (Cys-SOH) intermediate and disulfide bond formation across two subunits during catalysis. During oxidative stress, however, the Cys-SOH moiety can react with H2O2 to form Cys sulfinic acid (Cys-SO2H), resulting in inactivation. The propensity to hyperoxidize varies greatly among human Prxs. Mitochondrial Prx3 is the most resistant to inactivation, but the molecular basis for this property is unknown. A panel of chimeras and Cys variants of Prx2 and Prx3 were treated with H2O2 and analyzed by rapid chemical quench and time-resolved electrospray ionization-TOF mass spectrometry. The latter utilized an on-line rapid-mixing setup to collect data on the low seconds time scale. These approaches enabled the first direct observation of the Cys-SOH intermediate and a putative Cys sulfenamide (Cys-SN) for Prx2 and Prx3 during catalysis. The substitution of C-terminal residues in Prx3, residues adjacent to the resolving Cys residue, resulted in a Prx2-like protein with increased sensitivity to hyperoxidation and decreased ability to form the intermolecular disulfide bond between subunits. The corresponding Prx2 chimera became more resistant to hyperoxidation. Taken together, the results of this study support that the kinetics of the Cys-SOH intermediate is key to determine the probability of hyperoxidation or disulfide formation. Given the oxidizing environment of the mitochondrion, it makes sense that Prx3 would favor disulfide bond formation as a protection mechanism against hyperoxidation and inactivation.  相似文献   
5.
Antioxidant defenses include a group of ubiquitous, non-heme peroxidases, designated the peroxiredoxins, which rely on an activated cysteine residue at their active site to catalyze the reduction of hydrogen peroxide, organic hydroperoxides, and peroxynitrite. In the typical 2-Cys peroxiredoxins, a second cysteinyl residue, termed the resolving cysteine, is also involved in intersubunit disulfide bond formation during the course of catalysis by these enzymes. Many bacteria also express a flavoprotein, AhpF, which acts as a dedicated disulfide reductase to recycle the bacterial peroxiredoxin, AhpC, during catalysis. Mechanistic and structural studies of these bacterial proteins have shed light on the linkage between redox state, oligomeric state, and peroxidase activity for the peroxiredoxins, and on the conformational changes accompanying catalysis by both proteins. In addition, these studies have highlighted the dual roles that the oxidized cysteinyl species, cysteine sulfenic acid, can play in eukaryotic peroxiredoxins, acting as a catalytic intermediate in the peroxidase activity, and as a redox sensor in regulating hydrogen peroxide-mediated cell signaling.  相似文献   
6.
Sf2523蛋白属于硫氧还蛋白过氧化物酶(Prx)家族,在有氧代谢过程中消除活性氧,起到保护生命大分子的重要作用.通过构建原核表达体系,可溶性表达并纯化了Sf2523酶蛋白,并对蛋白进行了过氧化物酶活性检测,证明其依然具有天然活性,酶的核心结构并未发生变化.由分子排阻色谱结果发现,酶蛋白体内和体外聚集状态不同,离体蛋白聚集状态不稳定,趋于二体化.将纯化的单体蛋白即时进行了结晶实验,初筛长出了针状晶体.通过进一步切除标签蛋白进行优化处理,最终得到了均匀的三维单晶.  相似文献   
7.
Expression and regulation of peroxiredoxin 5 in human osteoarthritis   总被引:8,自引:0,他引:8  
Reactive oxygen species (ROS) are implicated in the pathogenesis of osteoarthritis (OA). However, little is known about the antioxidant defence system in articular cartilage. We investigated the expression and regulation of peroxiredoxin 5 (PRDX5), a newly discovered thioredoxin peroxidase, in human normal and osteoarthritic cartilage. Our results show that human cartilage constitutively expresses PRDX5. Moreover, the expression is up-regulated in OA. Inflammatory cytokines tumour necrosis factor alpha and interleukin 1 beta contribute to this up-regulation by increasing intracellular ROS production. The present study suggests that PRDX5 may play a protective role against oxidative stress in human cartilage.  相似文献   
8.
过氧化物还原酶(Prx)是生物体内广泛存在的一类酶,在消除过氧化氢和抗氧化胁迫中起着重要的作用。本研究采用PCR扩增编码中国明对虾Prx成熟肽的基因,并克隆到大肠杆菌表达载体pCR®T7/NT TOPO® TA中进行体外重组表达。重组质粒转化大肠杆菌BL21 (DE3) pLysS后,经IPTG诱导表达产生包涵体形式的目的蛋白。对重组蛋白进行LC–ESI–MS分析,结果表明融合蛋白的四个肽段与中国明对虾Prx相应肽段完全一致。将重组蛋白通过金属螯合柱进行纯化,进而透析、复性,最后获得了具有较高过氧化物酶活性的重组Prx。中国明对虾Prx的成功表达,为深入研究其在中国明对虾免疫反应和抗氧化胁迫中的作用奠定了基础。  相似文献   
9.
《FEBS letters》2014,588(23):4342-4347
In addition to the standard NADPH thioredoxin reductases (NTRs), plants hold a plastidic NTR (NTRC), with a thioredoxin module fused at the C-terminus. NTRC is an efficient reductant of 2-Cys peroxiredoxins (2-Cys Prxs). The interaction of NTRC and chloroplastic thioredoxin x with 2-Cys Prxs has been confirmed in vivo, by bimolecular fluorescence complementation (BiFC) assays, and in vitro, by isothermal titration calorimetry (ITC) experiments. In comparison with thioredoxin x, NTRC interacts with 2-Cys Prx with higher affinity, both the thioredoxin and NTR domains of NTRC contributing significantly to this interaction, as demonstrated by using the NTR and thioredoxin modules of the enzyme expressed separately. The presence of the thioredoxin domain seems to prevent the interaction of NTRC with thioredoxin x.  相似文献   
10.
Cilia/flagella are evolutionarily conserved cellular organelles. In this study, we demonstrated that Dunaliella salina Peroxiredoxin 1 (DsPrdx1) localized to the flagella and basal bodies, and was involved in flagellar disassembly. The link between DsPrdx1 and flagella of Dunaliella salina (D. salina) encouraged us to explore the function of its human homologue, Homo sapiens Peroxiredoxin 1 (HsPrdx1) in development and physiology. Our results showed that HsPrdx1 was overexpressed, and cilia were lost in esophageal squamous cell carcinoma (ESCC) cells compared with the non-cancerous esophageal epithelial cells Het-1A. Furthermore, when HsPrdx1 was knocked down by short hairpin RNA (shRNA) lentivirus in ESCC cells, the phenotype of cilia lost can be reversed, and the expression levels of tumor suppressor genes LKB1 and p-AMPK were increased, and the activity of the oncogene Aurora A was inhibited compared with those in cells transfected with scrambe-shRNA lentivirus. These findings firstly showed that Prdx1 is involved in disassembly of flagella and cilia, and suggested that the abnormal expression of the cilia-related gene including Prdx1 may affect both ciliogenesis and cancernogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号