首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   463篇
  免费   41篇
  国内免费   12篇
  2023年   8篇
  2022年   22篇
  2021年   19篇
  2020年   12篇
  2019年   9篇
  2018年   22篇
  2017年   11篇
  2016年   5篇
  2015年   22篇
  2014年   24篇
  2013年   29篇
  2012年   14篇
  2011年   13篇
  2010年   17篇
  2009年   25篇
  2008年   29篇
  2007年   26篇
  2006年   24篇
  2005年   28篇
  2004年   18篇
  2003年   12篇
  2002年   18篇
  2001年   3篇
  2000年   8篇
  1999年   13篇
  1998年   19篇
  1997年   11篇
  1996年   8篇
  1995年   9篇
  1994年   6篇
  1993年   5篇
  1992年   7篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
排序方式: 共有516条查询结果,搜索用时 15 毫秒
1.
2.
3.
The periplasmic dissimilatory nitrate reductase from Rhodobacter capsulatus N22DNAR+ has been purified. It comprises a single type of polypeptide chain with subunit molecular weight 90,000 and does not contain heme. Chlorate is not an alternative substrate. A molybdenum cofactor, of the pterin type found in both nitrate reductases and molybdoenzymes from various sources, is present in nitrate reductase from R. capsulatus at an approximate stoichiometry of 1 molecule per polypeptide chain. This is the first report of the occurrence of the cofactor in a periplasmic enzyme. Trimethylamine-N-oxide reductase activity was fractionated by ion exchange chromatography of periplasmic proteins. The fractionated material was active towards dimethylsulphoxide, chlorate and methionine sulphoxide, but not nitrate. A catalytic polypeptide of molecular weight 46,000 was identified by staining for trimethylamine-N-oxide reductase activity after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. The same polypeptide also stained for dimethylsulphoxide reductase activity which indicates that trimethylamine-N-oxide and dimethylsulphoxide share a common reductase.Abbreviations DMSO dimethylsulphoxide - LDS lithium dodecyl sulphate - MVH reduced methylviologen - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulphate - TMAO trimethylamine-N-oxide  相似文献   
4.
The periplasmic location of enzymes A and B of the thiosulphate-oxidizing multienzyme system of Thiobacillus versutus has been further confirmed by differential radiolabelling of periplasmic and cytoplasmic proteins. The stoichiometries of respiration-driven proton translocation in T. versutus were determined using the oxygen pulse and the initial rate methods. A value for the H+/O quotient (number of protons translocated per oxygen atom reduced) of about 2.8 was found for the oxidation of thiosulphate, and of about 2.5 for sulphite. The H+/O quotient for endogenous respiration was about 5.7. The data are shown to be in good agreement with the scheme proposed previously for thiosulphate oxidation by this organism. Proton generation during the oxidation of thiosulphate or sulphite is indicated to occur in the periplasm rather than by pumping across the cytoplasmic membrane. The results also suggest that a H+/O quotient of six occurs during NADH oxidation (from endogenous metabolism measurements) and that the terminal cytochrome oxidase, aa3, does not function as a proton pump.Abbreviations DCCD dicyclohexyl carbodiimide - FCCP carbonyl cyanide p-trifluoromethoxyphenylhydrazone - HQNO 2-n-heptyl-4-hydroxyquinoline N-oxide - TMPD N,N,N,N-tetramethyl-p-phenylenediamine - IEF isoelectric focusing - HIC hydrophobic interaction chromatography - EAI ethyl acetimidate hydrochloride - IAI isethionyl acetimidate  相似文献   
5.
We have performed a computational simulation of the aggregation and chaperonin-dependent reconstitution of dimeric prokaryotic ribulose bisphosphate carboxylase/oxygenase (Rubisco), based on the data of P. Goloubinoff et al. (1989, Nature 342, 884-889) and P. V. Viitanen et al. (1990, Biochemistry 29, 5665-5671). The aggregation is simulated by a set of 12 differential equations representing the aggregation of the Rubisco folding intermediate, Rubisco-I, with itself and with aggregates of Rubisco-I, leading up to dodecamers. Four rate constants, applying to forward or reverse steps in the aggregation process, were included. Optimal values for these constants were determined using the ellipsoid algorithm as implemented by one of us (Ecker, J.G. & Kupferschmid, M., 1988, Introduction to Operations Research, Wiley, New York, pp. 315-322). Intensive exploration of simpler aggregation models did not identify an alternative that could simulate the data as well as this one. The activity of the chaperonin in this system was simulated by using this aggregation model, combined with a model similar to that proposed by Goloubinoff et al. (1989). The model assumes that the chaperonin can bind the folding intermediate rapidly, and that the chaperonin complex releases the Rubisco molecule slowly, permitting time for its spontaneous folding while interacting with the chaperonin. This is followed by self-association of the folded Rubisco monomer to yield the active dimeric Rubisco. A modification of the model that simulates temperature effects was also constructed. The most important results we obtained indicate that the chaperonin-dependent reconstitution of Rubisco can be simulated adequately without invoking any catalysis of folding by the chaperonin. In addition, the simulations predict values for the association rate constant of Rubisco-I with the chaperonin, and other variables, that are subject to experimental verification.  相似文献   
6.
The characteristics of malate transport into aerobically grown cells of the purple photosynthetic bacterium Rhodobacter capsulatus were determined. A single transport system was distinguished kinetically which displayed a Kt value of 2.9 ± 1.2 μM and Vmax of 43 ± 6 nmol · min-1 · mg-1 protein. Competition experiments indicated that the metabolically related C4-dicarboxylates succinate and fumarate are also transported by this system. Malate uptake was sensitive to osmotic shock and evidence from the binding of radiolabelled malate and succinate to periplasmic protein fractions indicated that transport is mediated by a dicarboxylate binding protein. The activity of the transport system was studied as a function of external and internal pH and it was found that a marked activation of uptake occurred at intracellular pH values greater than 7. The use of a high affinity binding protein dependent system to transport a major carbon and energy source suggests that Rhodobacter capsulatus would be capable of obtaining growth sustaining quantities of C4-dicarboxylates even if these were present at very low concentrations in the environment.  相似文献   
7.
A new chemolithotrophic nitrite-oxidizing bacterium, for which the name Nitrospira marina is proposed, was isolated from the Gulf of Maine. N. marina is a Gramnegative curved rod which may form spirals with 1 to 12 turns. Cells have a unique periplasmic space and lack intracytoplasmic membranes and carboxysomes. N. marina is an obligate chemolithotroph, but best growth is obtained in a mixotrophic medium. N. marina may be one of the most prevalent nitrite-oxidizing bacteria in some oceanic environments. Type strain is field with American Type Culture Collection (ATCC 43039).  相似文献   
8.
The effects of nine drugs on the CD spectra of a synthetic calcium binding analog of site III of rabbit skeletal troponin C, can generally be divided into 3 groups: (1) that consisting of haloperidol, benperidol, molindone and promethazine, had no effect on the CD spectrum or calcium sensitivity of the apopeptide; (2) that composed of structurally rigid thioxanthenes, induced CD-detectable structural change in the apopeptide but prevented Ca2+-induced structural change; (3) that consisting of chlorpromazine, trifluoperazine and fluphenazine, induced structural change in the peptide but had no effect on the Ca2+-induced structural change.  相似文献   
9.
Summary— A review of the proteinaceous machinery involved in protein sorting pathways and protein folding and assembly in mitochondria and peroxisomes is presented. After considering the various sorting pathways and targeting signals of mitochondrial and peroxisomal proteins, we make a comparative dissection of the protein factors involved in: i) the stabilization of cytosolic precursor proteins in a translocation competent conformation; ii) the membrane import apparatus of mitochondria and peroxisomes; iii) the processing of mitochondrial precursor proteins, and the eventual processing of certain peroxisomal precursor, in the interior of the organelles; and iv) the requirement of molecular chaperones for appropriate folding and assembly of imported proteins in the matrix of both organelles. Those aspects of mitochondrial biogenesis that have developed rapidly during the last few years, such as the requirement of molecular chaperones, are stressed in order to stimulate further parallel investigations aimed to understand the origin, biochemistry, molecular biology and pathology of peroxisomes. In this regard, a brief review of findings from our group and others is presented in which the role of the F1-ATPase α-subunit is pointed out as a molecular chaperone of mitochondria and chloroplasts. In addition, data are presented that could question our previous indication that the immunoreactive protein found in the rat liver peroxisomes is due to the presence of the F1-ATPase α-subunit.  相似文献   
10.
An unresolved key issue in the mechanism of protein folding assisted by the molecular chaperone GroEL is the nature of the substrate protein bound to the chaperonin at different stages of its reaction cycle. Here we describe the conformational properties of human dihydrofolate reductase (DHFR) bound to GroEL at different stages of its ATP-driven folding reaction, determined by hydrogen exchange labeling and electrospray ionization mass spectrometry. Considerable protection involving about 20 hydrogens is observed in DHFR bound to GroEL in the absence of ATP. Analysis of the line width of peaks in the mass spectra, together with fluorescence quenching and ANS binding studies, suggest that the bound DHFR is partially folded, but contains stable structure in a small region of the polypeptide chain. DHFR rebound to GroEL 3 min after initiating its folding by the addition of MgATP was also examined by hydrogen exchange, fluorescence quenching, and ANS binding. The results indicate that the extent of protection of the substrate protein rebound to GroEL is indistinguishable from that of the initial bound state. Despite this, small differences in the quenching coefficient and ANS binding properties are observed in the rebound state. On the basis of these results, we suggest that GroEL-assisted folding of DHFR occurs by minor structural adjustments to the partially folded substrate protein during iterative cycling, rather than by complete unfolding of this protein substrate on the chaperonin surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号