首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  2017年   1篇
  2006年   2篇
  2000年   1篇
  1992年   2篇
  1990年   2篇
  1989年   4篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Peripheral-type benzodiazepine binding sites (PTBBS) are markedly increased in the injured CNS. Astrocytes appear to be the primary cell type which express increased PTBBS. Because certain cytokines within the injured CNS are potent mitogens for astrocytes, we examined the effects of two such cytokines, interleukin (IL)-1 beta and tumor necrosis factor (TNF), on PTBBS in cultured astrocytes using [3H]Ro 5-4864 as the specific ligand. Purified cultures of either polygonal or process-bearing astrocytes were prepared from neonatal rat cerebral hemispheres. At a concentration of 1.8 nM, specific binding of the radioactive ligand to polygonal astrocytes reached equilibrium within 60 min and was half-maximal by 5-10 min. By contrast, specific binding to process-bearing astrocytes barely exceeded background levels. IL-1 and TNF increased PTBBS within polygonal astrocytes in both dose- and time-dependent manners. At 10-50 ng/ml, IL-1 beta and TNF-alpha elevated [3H]Ro 5-4864 binding in polygonal astrocyte cultures 65 and 87%, respectively, above the level in control cultures. However, no changes in PTBBS were seen within polygonal astrocytes after IL-2 treatment. Scatchard analysis of saturation binding experiments suggested that the increase in PTBBS promoted by TNF was due to an increased number of binding sites present in polygonal astrocytes and not due to an increase in receptor affinity. Binding data suggested that PTBBS within cultures of process-bearing astrocytes were virtually absent irrespective of the treatment. These in vitro data suggest that certain cytokines found in the injured brain may be involved in up-regulating PTBBS within a particular subtype of astrocyte.  相似文献   
2.
The binding of [3H]Ro 5-4864, a specific ligand for "peripheral-type" benzodiazepine binding sites and [3H]Ro 15-1788, a specific ligand for the central benzodiazepine receptors, was determined in subcellular fractions of rat brain. As previously reported, the highest levels of "peripheral-type" benzodiazepine binding sites and benzodiazepine receptors were found in the crude P1 and P2 fractions, respectively. Purification of these crude fractions revealed that high levels of both [3H]Ro 5-4864 and [3H]Ro 15-1788 binding were present in the mitochondrial and synaptosomal fractions. In contrast, the purified nuclei and myelin contained low levels of both [3H]Ro 5-4864 and [3H]Ro 15-1788 binding.  相似文献   
3.
High-affinity binding sites for [3H]PK 11195 have been detected in brain membranes of rainbow trout (Salmo gairdneri) and mouse forebrain, where the densities of receptors were 1,030 and 445 fmol/mg of protein, respectively. Ro 5-4864 (4'-chlorodiazepam) was 2,200-fold less potent as a competitor of [3H]PK 11195 binding in the piscine than the murine membranes. Investigation of the regional distribution of these sites in trout yielded a rank order of density of spinal cord greater than olfactory bulb = optic tectum = rhombencephalon greater than cerebellum greater than telencephalon. This site in trout shared some of the characteristics of the peripheral-type benzodiazepine receptor (PTBR) (also known as the mitochondrial benzodiazepine receptor) in rodents, i.e., high affinity for PK 11195 and the endogenous ligand protoporphyrin IX, but was unique in the low affinity of Ro 5-4864 (41 microM) and diazepam and the relatively high affinity of the calcium channel ligand diltiazem and two central benzodiazepine ligands, CGS 8216 and CGS 9896. The differential affinity for the two prototypic PTBR ligands in trout is similar to that previously observed in calf and human brain membranes. Structural differences for the trout sites are indicated by the relative inability of diethyl pyrocarbonate to modify histidine residues of the binding site in trout as compared with mouse membranes. Heterogeneity of binding of the two prototypic PTBR ligands in mouse brain membranes was indicated by additivity studies, equilibrium competition experiments, and saturation isotherms, which together support the hypothesis that Ro 5-4864 discriminates between two [3H]PK 11195 binding sites having high (nanomolar) and low (micromolar) affinity, respectively.  相似文献   
4.
The benzodiazepines, Ro 5-4864, diazepam, clonazepam, and also PK-11195, inhibited, at micromolar concentrations, the proliferation of rat C6 glioma and mouse neuro-2A neuroblastoma cells in culture. The cells possessed high levels of "peripheral-type" high-affinity benzodiazepine binding sites as judged by binding assays and displacement potencies. However, the different potencies and specificities of compounds for the antiproliferative actions and binding affinities for the binding site suggest that the antiproliferative actions were not mediated through the peripheral-type binding site. In support of this, these compounds have also been shown to inhibit proliferation of some nonneuronal cultured cell lines, e.g., mouse SP2/O-Ag 14 hybridoma and rat NCTC epithelial cells, which have no detectable high-affinity peripheral-type benzodiazepine binding sites.  相似文献   
5.
BackgroundProtoporphyrin IX (PP IX), the immediate precursor to heme, combines with ferrous iron to make this product. The effects of exogenous PP IX on iron metabolism remain to be elucidated. Peripheral-type benzodiazepine receptor (PBR) is implicated in the transport of coproporphyrinogen into the mitochondria for conversion to PP IX. We have demonstrated that PBR-Associated Protein 7 (PAP7) bound to the Iron Responsive Element (IRE) isoform of divalent metal transporter 1 (DMT1). PP IX and PAP7 are ligands for PBR, thus, we hypothesized that PAP7 interact with PP IX via PBR.MethodsWe have examined in K562 cells, which can be induced to undergo erythroid differentiation by PP IX and hemin, the effects of PP IX on the expression of PAP7 and other proteins involved in cellular iron metabolism, transferrin receptor 1 (TfR1), DMT1, ferritin heavy chain (FTH), c-Myc and C/EBPα by western blot and quantitative real time PCR analyses.ResultsPP IX significantly decreased mRNA levels of DMT1 (IRE) and (non-IRE) from 4 h. PP IX markedly decreased protein levels of C/EBPα, PAP7 and DMT1. In contrast, hemin, which like PP IX also induces K562 cell differentiation, had no effect on PAP7 or DMT1 expression.ConclusionWe hypothesize that PP IX binds to PBR displacing PAP7 protein, which is then degraded, decreasing the interaction of PAP7 with DMT1 (IRE) and resulting in increased turnover of DMT1.General significanceThese results suggest that exogenous PP IX disrupts iron metabolism by decreasing the protein expression levels of PAP7, DMT1 and C/EBPα.  相似文献   
6.
Peripheral-type benzodiazepine binding sites are not normally present in most cerebral tissues, but following neuronal damage, the cells involved in the ensuing gliosis show a marked expression of these sites. In a unilateral excitotoxic striatal lesion in the rat, we sought to determine whether the isoquinoline derivatives PK11195 and PK14105 bind to these sites in vivo and whether demonstration of these sites offers the potential of indirectly localising areas of neuronal damage. Binding was studied at several intervals after coinjection of [3H]PK11195 and [18F]PK14105 to determine the time courses of specific binding. Both compounds were rapidly extracted into all cerebral tissues, but in the absence of binding sites in nonlesioned tissues, this was followed by a rapid clearance of radioactivity. In lesioned areas, both [3H]PK11195 and [18F]PK14105 accumulated over the first 5 min followed by a much slower clearance of radioactivity, resulting in a "specific signal." [3H]PK11195 binding peaked at 20-30 min postinjection, with radioactivity in the lesioned striatum being three times greater than in its contralateral homologue. The specific signal was present for at least 60 min. The maximal [18 F]PK14105-specific signal was of similar magnitude but peaked earlier and was retained for only 45 min. Specific signals with both ligands were also detected in regions remote from the primary lesion site, e.g., in the hippocampus and substantia nigra. Predosing animals with a large dose of PK11195 (3 mg/kg), sufficient to saturate peripheral-type benzodiazepine binding sites, abolished in vivo binding of both [3H]PK11195 and [18F]PK14105 to both primary- and remote-lesioned tissues. The specific signal with both ligands could be of sufficient magnitude and duration to make tomographic studies in humans feasible.  相似文献   
7.
The binding of [3H]PK 11195 and [3H]Ro 5-4864 to membrane preparations from cerebral cortex and peripheral tissues of various species was studied. [3H]PK 11195 (0.05-10 nM) bound with high affinity to rat and calf cerebral cortical and kidney membranes. [3H]Ro 5-4864 (0.05-30 nM) also successfully labeled rat cerebral cortical and kidney membranes, but in calf cerebral cortical and kidney membranes, its binding capacity was only 3 and 4%, respectively, of that of [3H]PK 11195. Displacement studies showed that unlabeled Ro 5-4864, diazepam, and flunitrazepam were much more potent in displacing [3H]PK 11195 from rat cerebral cortex and kidney membranes than from calf tissues. The potency of unlabeled Ro 5-4864 in displacing [3H]PK 11195 from the cerebral cortex of various other species was also tested, and the rank order of potency was rat = guinea pig greater than cat = dog greater than rabbit greater than calf. Analysis of these displacement curves revealed that Ro 5-4864 bound to two populations of binding sites from rat and calf kidney and from rat, guinea pig, rabbit, and calf cerebral cortex but to a single population of binding sites from cat and dog cerebral cortex. Using [3H]PK 11195 as a ligand, the rank order of binding capacity in cerebral cortex of various species was cat greater than calf greater than guinea pig greater than rabbit greater than dog greater than rat, whereas when [3H]Ro 5-4864 was used, the rank order of binding capacity was cat greater than guinea pig greater than rat greater than rabbit greater than calf greater than dog.  相似文献   
8.
The presence of benzodiazepine binding sites in rat vas deferens was detected using [3H]Ro 5-4864 as a radioligand. The binding of [3H]Ro 5-4864 to the mitochondrial sites is saturable, reversible, and temperature and time dependent. The association rate constant (k1) was 8.7 +/- 0.7 x 10(7) M-1 min-1, and the dissociation rate constant (k-1) was 0.031 +/- 0.003 min-1. The dissociation constant (KD) determined by saturation binding was 5.22 +/- 0.56 nM. The density of binding was 4,926 +/- 565 fmol/mg of protein. The Hill coefficient of binding was 0.99 +/- 0.01, an indication that [3H]Ro 5-4864 binds to a single site. The [3H]Ro 5-4864 binding was inhibited competitively by Ro 5-4864 and 2-hydroxy-5-nitrobenzyl-6-thioguanosine and noncompetitively by PK 11195, nitrendipine, alpha,beta-methylene-ATP, and carboxyatractyloside and was not affected by clonazepam, dicyclohexylcarbodiimide, or protoporphyrin IX. Our data indicate that [3H]Ro 5-4864 binding sites are not identical to those labeled by PK 11195. These binding sites are modulated by the ADP/ATP mitochondrial carrier, and an interaction of dihydropyridines and [3H]Ro 5-4864 binding sites in rat vas deferens is suggested.  相似文献   
9.
High doses of diazepam (10.0-20.0 mg/kg) were shown to reduce the volume of acute inflammatory paw edema in rats as a response to carrageenan administration. This effect was attributed to an action of diazepam on the peripheral-type benzodiazepine receptor (PBR) present in the adrenal and/or immune/inflammatory cells. The present study was undertaken to analyze the involvement of nitric oxide (NO) on the effects of diazepam on carrageenan-induced paw edema in rats (CIPE) and to look for the presence of PBR and inducible/constitutive NO synthases (NOS) on slices taken from the inflamed paws of diazepam-treated rats. For that, an acute inhibition of NO biosynthesis was achieved using 50.0 mg/kg No mega-nitro-L-arginine (L-NAME), L-arginine (300.0 mg/kg), the true precursor of NO, and D-arginine (300.0 mg/kg), its false substrate, were also used. The following results were obtained: (1) diazepam (10.0 and 20.0 mg/kg) decreased CIPE values in a dose- and time-dependent way; (2) diazepam effects on CIPE were increased by L-NAME pretreatment; (3) treatment with L-arginine but not with D-arginine reverted at least in part the decrements of CIPE values observed after diazepam administration; (4) PBR were found in endothelial and inflammatory cells that migrated to the inflammatory site at the rat paw; (5) confocal microscopy showed the presence of both PBR and NOS in endothelial and inflammatory cells taken from inflamed paw tissues of rats treated with diazepam a finding not observed in tissues provided from rats treated with diazepam's control solution. These results suggest an important role for NO on the effects of diazepam on CIPE. Most probably, these effects reflect a direct action of diazepam on PBR present in the endothelium of the microvascular ambient and/or on immune/inflammatory cells. An action like that would lead, among other factors, to a decrease in NO, generated by NO synthase, and thus in the mechanisms responsible for CIPE.  相似文献   
10.
The present study demonstrates for the first time the solubilization of peripheral-type benzodiazepine binding sites (PBS) from cat cerebral cortex. Of all detergents tested [digitonin, 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS), Tween 20, deoxycholate, and Triton X-100] in the presence of NaCl, the best solubilization (15% of initial activity) was obtained using 0.5% of the zwitterionic detergent CHAPS plus 2 M NaCl. Specific binding of [3H]PK 11195 to membrane-bound and solubilized PBS was saturable, yielding equilibrium dissociation constants (KD) of 1.3 +/- 0.2 and 1.9 +/- 0.3 nM, respectively, and maximal numbers of binding sites of 1,435 +/- 150 and 980 +/- 126 fmol/mg protein, respectively. The KD value of PK 11195 binding to solubilized PBS obtained from experimental kinetic analysis was 0.95 +/- 0.09 nM. The relative potencies of various compounds (PK 11195, Ro 5-4864, diazepam, flunitrazepam, clonazepam, methyl-beta-carboline-3-carboxylate, and Ro 15-1788) in displacing [3H]PK 11195 specific binding from membrane-bound and solubilized PBS were similar. Most of the solubilized binding activity was destroyed by heating at 60 degrees C for 30 min or by treatment with 2 M guanidinium chloride, which indicates the presence of a protein-binding site in the solubilized preparation. Over 85% of the solubilized binding activity was retained after 1 week at 4 degrees C, which will enable future application of purification procedures without major concern for stability of the material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号