首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2014年   1篇
  2010年   1篇
  2005年   2篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Perillaldehyde (PAH), one of the major oil components in Perilla frutescens, has anti-inflammatory effects. Few studies have examined the neuroprotective effect of PAH on stroke. So the aim of our study is to investigate the effect of PAH on ischemia–reperfusion-induced injury in the rat brain cortex. Middle cerebral artery occlusion (MCAO) model was selected to make cerebral ischemia–reperfusion injury. Rats were assigned randomly to groups of sham, MCAO, and two treatment groups by PAH at 36.0, 72.0 mg/kg. Disease model was set up after intragastrically (i.g.) administering for 7 consecutive days. The neurological deficit, the cerebral infarct size, biochemical parameters and the relative mRNA and protein levels were examined. The results showed that the NO level, the iNOS activity, the neurological deficit scores, the cerebral infarct size and the expression of inflammatory cytokines including interleukin (IL)-1β, interleukin (IL)-6 and tumor necrosis factor (TNF)-α were significantly decreased by PAH treatment. PAH also increased the Phospho-Akt level and decrease the Phospho-JNK level by Western blot analysis. Meanwhile, the PAH groups exhibited a dramatically decrease of apoptosis-related mRNA expression such as Bax and caspase-3. Our findings shown that PAH attenuates cerebral ischemia/reperfusion injury in the rat brain cortex, and suggest its neuroprotective effect is relate to regulating the inflammatory response through Akt /JNK pathway. The activation of this signalling pathway eventually inhibits apoptotic cell death induced by cerebral ischemia–reperfusion.  相似文献   
2.
Vasodilative effect of perillaldehyde on isolated rat aorta   总被引:2,自引:0,他引:2  
The vasodilative effect of perillaldehyde, one of the major oil components in Perilla frutescens BRITTON, was studied using isolated rat aorta. Perillaldehyde at final concentrations of 0.01 to 1 mM showed dose-dependent relaxation of the aorta contracted by treatment with prostaglandin F2alpha or norepinephrine. Neither the presence of NG-nitro-L-arginine methyl ester nor removal of the aortic endothelium affected the vasodilatation, suggesting that perillaldehyde exerts a direct effect on vascular smooth muscle cells. The vasodilative effect of perillaldehyde was not inhibited by pretreatment with a beta-adrenergic receptor blocker (propranolol), an inhibitor of phosphodiesterase (theophylline), a delayed rectifier K+ channel blocker (tetraethylammonium chloride), or an ATP-sensitive K+ channel blocker (glibenclamide). However, perillaldehyde showed contrasting effects on vasodilatation of the aorta contracted by an influx of extracellular Ca2+ - perillaldehyde caused little vasodilatation on the aorta contracted by the Ca2+ ionophore A23187, while it inhibited the vasoconstriction induced by treatment with high-concentration K+, which dominantly opened the voltage-dependent Ca2+ channel. These results suggest that the vasodilative effect of perillaldehyde is derived from blocking the Ca2+ channels.  相似文献   
3.
The essential oils from 15 species of African plants selected by ethnobotanical considerations and field inspection (odour and presence of insects) were screened for fumigant toxicity to Anopheles gambiae s.s. in the laboratory. Essential oils from 6 species showed varying levels of toxicity, with Conyza newii (Compositae) and Plectranthus marruboides (Labiateae) being the most potent. Fifty compounds representing approximately 74% of the essential oil of C. newii were identified by GC-MS and GC-coinjection (for available standards). The major and some of the minor constituents of the two oils were assayed at different doses. Two compounds, from C. newii, perillaldehyde and perillyl alcohol, exhibited higher fumigant toxicity (LD50 = 1.05 x 10(-4) and 2.52 x 10(-4) mg cm(-3), respectively) than the parent oil (2.0 x 10(-3) mg cm(-3)). GC-MS analysis of the essential oil of P. marruboides gave results similar to that previously reported. Interestingly, none of its components were active, suggesting that the insecticidal activity of the oil results from either some of the minor components or as a blend effect of some of the major constituents.  相似文献   
4.
Cytochrome P450 mono-oxygenases from peppermint, spearmint and perilla (all members of the family Lamiaceae) mediate the regiospecific hydroxylation of the parent olefin (−)-limonene to produce essential oil components oxygenated at C3, C6 and C7, respectively. Cloning, expression and mutagenesis of cDNAs encoding the peppermint limonene-3-hydroxylase and the spearmint limonene-6-hydroxylase have allowed the identification of a single amino acid residue which determines the regiospecificity of oxygenation by these two enzymes. A hybridization strategy provided a cytochrome P450 limonene hydroxylase cDNA from perilla with which to further evaluate the structural determinants of regiospecificity for oxygenation of the common substrate (−)-limonene. The perilla cDNA was a partial clone of 1550 bp (lacking the N-terminal membrane insertion domain), and shared 66% identity with the peppermint 3-hydroxylase and spearmint 6-hydroxylase at the amino acid level. The perilla cytochrome P450 was expressed in Escherichia coli as a chimeric protein fused with the N-terminal membrane insertion domain of the limonene-3-hydroxylase. The kinetically competent recombinant protein was characterized and shown to produce a mixture of C3-, C6- and C7-hydroxylated limonene derivatives with a distribution of 33%, 14% and 53%, respectively.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号