首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4953篇
  免费   173篇
  国内免费   159篇
  2024年   6篇
  2023年   38篇
  2022年   54篇
  2021年   71篇
  2020年   88篇
  2019年   101篇
  2018年   130篇
  2017年   100篇
  2016年   95篇
  2015年   125篇
  2014年   231篇
  2013年   459篇
  2012年   194篇
  2011年   289篇
  2010年   191篇
  2009年   237篇
  2008年   222篇
  2007年   234篇
  2006年   222篇
  2005年   197篇
  2004年   193篇
  2003年   155篇
  2002年   137篇
  2001年   92篇
  2000年   94篇
  1999年   84篇
  1998年   93篇
  1997年   95篇
  1996年   87篇
  1995年   107篇
  1994年   58篇
  1993年   74篇
  1992年   59篇
  1991年   67篇
  1990年   53篇
  1989年   55篇
  1988年   49篇
  1987年   43篇
  1986年   40篇
  1985年   59篇
  1984年   70篇
  1983年   44篇
  1982年   51篇
  1981年   31篇
  1980年   29篇
  1979年   25篇
  1978年   22篇
  1977年   10篇
  1974年   6篇
  1973年   8篇
排序方式: 共有5285条查询结果,搜索用时 31 毫秒
1.
Matrix metalloproteinases (MMPs) are a family of hydrolytic enzymes that play significant roles in development, morphogenesis, inflammation, and cancer invasion. Endometase (matrilysin 2 or MMP-26) is a putative early biomarker for human carcinomas. The effects of the ionic and nonionic detergents on catalytic activity of endometase were investigated. The hydrolytic activity of endometase was detergent concentration dependent, exhibiting a bell-shaped curve with its maximum activity near the critical micelle concentration (CMC) of nonionic detergents tested. The effect of Brij-35 on human gelatinase B (MMP-9), matrilysin (MMP-7), and membrane-type 1 MMP (MT1-MMP) was further explored. Their maximum catalysis was observed near the CMC of Brij-35 (∼ 90 μM). Their IC50 values were above the CMC. The inhibition mechanism of MMP-7, MMP-9, and MT1-MMP by Brij-35 was a mixed type as determined by Dixon’s plot; however, the inhibition mechanism of endometase was noncompetitive with a Ki value of 240 μM. The catalytic activities of MMPs are influenced by detergents. Monomer of detergents may activate and stabilize MMPs to enhance catalysis, but micelle of detergents may sequester enzyme and block the substrate binding site to impede catalysis. Under physiological conditions, a lipid or membrane microenvironment may regulate enzymatic activity.  相似文献   
2.
Abstract

Microorganisms capable of aerobic respiration on ferrous ions are spread throughout eubacterial and archaebacterial phyla. Phylogenetically distinct organisms were shown to express spectrally distinct redox‐active biomolecules during autotrophic growth on soluble iron. A new iron‐oxidizing eubacterium, designated as strain Funis, was investigated. Strain Funis was judged to be different from other known iron‐oxidizing bacteria on the bases of comparative lipid analyses, 16S rRNA sequence analyses, and cytochrome composition studies. When grown autotrophically on ferrous ions, Funis produced conspicuous levels of a novel acid‐stable, acid‐soluble yellow cytochrome with a distinctive absorbance peak at 579 nm in the reduced state.

Stopped‐flow spectrophotometric kinetic studies were conducted on respiratory chain components isolated from cell‐free extracts of Thiobacillus ferrooxidans. Experimental results were consistent with a model where the primary oxidant of ferrous ions is a highly aggregated c‐type cytochrome that then reduces the periplasmic rusticyanin. The Fe(II)‐dependent, cytochrome c‐catalyzed reduction of the rusticyanin possessed three kinetic properties in common with corresponding intact cells that respire on iron: the same anion specificity, a similar dependence of the rate on the concentration of ferrous ions, and similar rates at saturating concentrations of ferrous ions  相似文献   
3.
Cardiolipin (CL) is a unique dimeric phospholipid that exists almost exclusively in the inner mitochondrial membrane (IMM) in eukaryotic cells. Two chiral carbons and four fatty acyl chains in CL result in a flexible body allowing interactions with respiratory chain complexes and mitochondrial substrate carriers. Due to its high content of unsaturated fatty acids, CL is particularly prone to reactive oxygen species (ROS)-induced oxidative attacks. Under mild mitochondrial damage, CL is redistributed to the outer mitochondrial membrane (OMM) and serves as a recognition signal for dysfunctional mitochondria, which are rapidly sequestered by autophagosomes. However, peroxidation of CL is far greater in response to severe stress than under normal or mild-damage conditions. The accumulation of oxidized CL on the OMM results in recruitment of Bax and formation of the mitochondrial permeability transition pore (MPTP), which releases Cytochrome c (Cyt c) from mitochondria. Over the past decade, the significance of CL in the function of mitochondrial bioenergy has been explored. Moreover, approaches to analyzing CL have become more effective and accurate. In this review, we discuss the unique structural features of CL as well as the current understanding of CL-based molecular mechanisms of mitophagy and apoptosis.  相似文献   
4.
5.
6.
7.
Peroxidase oxidation of o-dianisidine, 3,3′,5,5′-tetramethylbenzidine, and o-phenylenediamine in the presence of sodium dodecyl sulfate (SDS), an anionic surfactant, was spectrophotometrically studied. It was found that 0.1–100 mM SDS concentrations stabilize intermediates formed in the peroxidase oxidation of these substrates. The cause of the stabilization is an electrostatic interaction between positively charged intermediates and negatively charged surfactant.  相似文献   
8.
The synthesis of small glycoclusters with high affinity toward lectins is one of the important subjects in glycotechnology. Although cyclic α-(1→6)-d-octaglucoside (CI8) is an attractive scaffold on which to put glycosyl pendants, the compound has only secondary hydroxyl groups, which are relatively unreactive for substitution reactions. The oxidation of the vicinal diols of CI8 and reductive amination of the resultant dialdehydes with 2-aminoethyl mannoside gave mannose-CI8 conjugates with a variety of average mannose incorporation numbers (2-7). The average numbers were deduced from MALDI-TOF mass and 1H NMR spectroscopy. The binding ability of mannose-CI8 conjugates to concanavalin A increased with the increasing numbers of average mannose incorporation, reaching a plateau at tetravalence, as estimated from a latex bead-based agglutination lectin assay. Toxicity tests demonstrated the biocompatibility of mannose-CI8 conjugates.  相似文献   
9.
In this study, we examined the effects that antifreeze proteins have on the supercooling and ice-nucleating abilities of aqueous solutions. Very little information on such nucleation currently exists. Using an automated lag time apparatus and a new analysis, we show several dilution series of Type I antifreeze proteins. Our results indicate that, above a concentration of ∼8 mg/ml, ice nucleation is enhanced rather than hindered. We discuss this unexpected result and present a new hypothesis outlining three components of polar fish blood that we believe affect its solution properties in certain situations.  相似文献   
10.
Bacillus sp. YX-1 glucose dehydrogenase (BsGDH) with good solvent resistance catalyzes the oxidation of β-d-glucose to d-glucono-1,5-lactone. Xylose is a recyclable resource from hemicellulase hydrolysis. In this work, to improve the preference of BsGDH for xylose, we designed seven mutants inside or adjacent to the substrate binding pocket using site-directed mutagenesis. Among all mutants, Ala258Phe mutant displayed the highest activity of 7.59 U mg−1 and nearly 8-folds higher kcat/Km value towards xylose than wild-type BsGDH. The kinetic constants indicated that the A258F mutation effectively altered the transition state. By analysis of modeled protein structure, Ala258Phe created a space to facilitate the reactivity towards xylose. A258F mutant retained good solvent resistance in glycol, ethyl caprylate, octane, decane, cyclohexane, nonane, etc. as with BsGDH. This work provides a protein engineering approach to modify the substrate stereo-preference of alcohol dehydrogenase and a promising enzyme for cofactor regeneration in chiral catalysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号