首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   1篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  1999年   1篇
  1995年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
寡肤转运蛋白(PepT2,peptide transporter,SLC15A2)是哺乳动物体内能够转运二肤、三肽的蛋白.研究表明,一些类肽的小分子药物也是PepT2的底物,但PepT2的结构与生物学功能尚待研究.建立稳定表达PepT2的表达体系是研究PepT2的重要环节.根据GenBank中人PepT2基因序列,借助Primer5.0设计了1对寡核苷酸引物,经PCR合成长达2 190bp的目的序列,通过重组构建pET30a(+)/PepT2表达质柱,测序分析确认目的基因中的3个碱基发生突变.初步研究了pET30a(+)/PepT2在大肠杆菌BL21(DE3)pLysS中的表达,为PepT2原核表达的进一步科研和实际应用奠定了基础.  相似文献   
2.
Bauer K 《Neurochemical research》2005,30(10):1339-1345
Carnosine (beta-alanyl-histidine) and homocarnosine (gamma-aminobutyryl-histidine) are major constituents of excitable tissues, brain and skeletal muscles, but their physiological functions are yet unknown. Using primary cell culture systems, synthesis and uptake of carnosine exclusively by glial cells could be demonstrated. Uptake of carnosine was found to be mediated by a high affinity, energy-dependent dipeptide transport system, subsequently identified as the peptide transporter PepT2. With the synthesis of beta-Ala-Lys-Nepsilon-AMCA as a fluorescent reporter molecule, accumulation of this dipeptide derivative could be monitored under viable conditions not only in astroglia cells but also in folliculostellate cells of the anterior pituitary and in gonadal resident macrophages. This reporter dipeptide provided a most valuable tool to identify an intrapituitary communication system by tracing folliculostellate cells in acute slice preparation. Moreover, this substance could also be used to prepare pituitary cell cultures enriched with or depleted of folliculostellate cells that are needed for further studies.  相似文献   
3.
Tripeptidases from Lactococcus lactis subsp. lactis (L9PepTR), L. lactis subsp. cremoris (L6PepTR), and L. lactis subsp. hordniae (hTPepTR) were cloned, overexpressed, purified, and characterized. Although these enzymes contained three to seven naturally occurring amino acid differences, both metal-binding and catalytic sites were highly conserved. The kcat values of hTPepTR were approximately 1.5- to 2-fold higher than those of L9PepTR, while, for L6PepTR, they were approximately 0.8- to 1.4-times the L9PepTR values. The Km of tripeptidase from subsp. lactis (L9PepTR) was considerably larger when glycine was the amino acid located at both the N- and C-terminus of the peptide substrate. In addition, the Km values of L9PepTR increased in the following order for YGG, LGG, FGG, SGG, and α-aminoisobutyrylglycylglycine, while the kcat/Km decreased in the same order. These results suggest that the dipole moment and steric hindrance of the N-terminal amino acid side chain may be the most important factors controlling substrate specificity.  相似文献   
4.
5.
We evaluated the effect of whey protein hydrolysates (WPH) on the water absorption rate in the small intestine using a rat small intestine perfusion model. The rate was significantly higher with 5 g/L WPH than with 5 g/L soy protein hydrolysates or physiological saline (p?p?PepT1, significantly suppressed WPH’s enhancement of water absorption (p?r?=?0.82, p?PepT1 contributes.  相似文献   
6.
This study is the first systematic attempt to investigate the role of transmembrane segment 5 of hPepT1, the most conserved segment across different species, in forming a part of the aqueous substrate translocation pathway. We used cysteine-scanning mutagenesis in conjunction with the sulfhydryl-specific reagents, MTSEA and MTSET. Neither of these reagents reduced wild-type-hPepT1 transport activity in HEK293 cells and Xenopus oocytes. Twenty-one single cysteine mutations in hPepT1 were created by replacing each residue within TMS5 with a cysteine. HEK293 cells were then transfected with each mutated protein and the steady-state protein level, [3H]Gly-Sar uptake activity, and sensitivity to the MTS reagents were measured. S164C-, L168C-, G173C-, and I179C-hPepT1 were not expressed on the plasma membrane. Y167C-, N171C-, and S174C-hPepT1 showed PepT1. P182C-hPepT1 showed approximately 40% specific activity whereas all the remaining transporters, although still sensitive to single cysteine mutations, exhibited more than 50% specific activity when compared to WT-hPepT1. The activity of F166C-, L176C-, S177C-, T178C-, I180C-, T181C-, and P182C-hPepT1 was partially inhibited, while the activity of F163C- and I170C-hPepT1 was completely inhibited by 2.5mM MTSEA. F163C, I165C, F166C, A169C, I170C, S177C, T181C, and P182C were clearly accessible to 1mM MTSET. Overall, these results suggest that TMS5 lines the putative aqueous channel and is slightly tilted from the vertical axis of the channel, with the exofacial half forming a classical amphipathic alpha-helix and the cytoplasmic half being highly solvent accessible.  相似文献   
7.
Dietary amino acids can be transported into intestinal epithelial cells as di- and tripeptides by the action of the peptide transporter, PepT1 (SLC15A1). Expression of the chicken PepT1 (cPepT1) gene changes in response to dietary crude protein level; however, the molecular mechanism governing this regulation is unknown. This study analyzed the promoter region of the cPepT1 gene. Using deletion analysis, positive-acting (? 314 to ? 261, ? 169 to ? 155, and ? 120 to ? 60) and negative-acting (? 419 to ? 386 and ? 214 to ? 169) regions were mapped in transfected chick embryo fibroblasts (CEF). The addition of neither amino acids Phe, Arg, or Val, nor the dipeptides Gly-Sar (glycyl-sarcosine), Gly-Pro, Gly-Phe, Met-Pro, Met-Lys or Lys-Lys, had an effect on cPepT1 promoter activity in transfected CEF. The cPepT1 promoter was more active in CEF and primary chicken intestinal cells than in chicken liver cells. This study represents a functional characterization of the molecular regulation of the chicken PepT1 gene.  相似文献   
8.
The oligopeptide transporter PepT1 expressed in inflamed colonic epithelial cells transports small bacterial peptides, such as muramyl dipeptide (MDP) and l-Ala-γ-D-Glu-meso-diaminopimelic acid (Tri-DAP) into cells. The innate immune system uses various proteins to sense pathogen-associated molecular patterns. Nucleotide-binding oligomerization domain (NOD)-like receptors of which there are more than 20 related family members are present in the cytosol and recognize intracellular ligands. NOD proteins mediate NF-κB activation via receptor-interacting serine/threonine-protein kinase 2 (RICK or RIPK). The specific ligands for some NOD-like receptors have been identified. NOD type 1 (NOD1) is activated by peptides that contain a diaminophilic acid, such as the PepT1 substrate Tri-DAP. In other words, PepT1 transport activity plays an important role in controlling intracellular loading of ligands for NOD1 in turn determining the activation level of downstream inflammatory pathways. However, no direct interaction between Tri-DAP and NOD1 has been identified. In the present work, surface plasmon resonance and atomic force microscopy experiments showed direct binding between NOD1 and Tri-DAP with a K(d) value of 34.5 μM. In contrast, no significant binding was evident between muramyl dipeptide and NOD1. Furthermore, leucine-rich region (LRR)-truncated NOD1 did not interact with Tri-DAP, indicating that Tri-DAP interacts with the LRR domain of NOD1. Next, we examined binding between RICK and NOD1 proteins and found that such binding was significant with a K(d) value of 4.13 μM. However, NOD1/RICK binding was of higher affinity (K(d) of 3.26 μM) when NOD1 was prebound to Tri-DAP. Furthermore, RICK phosphorylation activity was increased when NOD was prebound to Tri-DAP. In conclusion, we have shown that Tri-DAP interacts directly with the LRR domain of NOD1 and consequently increases RICK/NOD1 association and RICK phosphorylation activity.  相似文献   
9.
The proton-coupled uptake of di- and tri-peptides is the major route of dietary nitrogen absorption in the intestine and of reabsorption of filtered protein in the kidney. In addition, the transporters involved, PepT1 (SLC15a1) and PepT2 (SLC15a2), are responsible for the uptake and tissue distribution of a wide range of pharmaceutically important compounds, including β-lactam antibiotics, angiotensin-converting enzyme inhibitors, anti-cancer and anti-viral drugs. PepT1 and PepT2 are large proteins, with over 700 amino acids, and to date there are no reports of their crystal structures, nor of those of related proteins from lower organisms. Therefore there is virtually no information about the protein 3-D structure, although computer-based approaches have been used to both model the transmembrane domain (TM) layout and to produce a substrate binding template. These models will be discussed, and a new one proposed from homology modeling rabbit PepT1 to the recently crystallized bacterial transporters LacY and GlpT. Understanding the mechanism by which PepT1 and PepT2 bind and transport their substrates is of great interest to researchers, both in academia and in the pharmaceutical industries.  相似文献   
10.
The intestinal absorption of di- and tri-peptides generally occurs via the oligopeptide transporter, PepT1. This study evaluates the expression of PepT1 in larval Atlantic cod (Gadus morhua) during the three weeks following the onset of exogenous feeding. Larval Atlantic cod were fed either wild captured zooplankton or enriched rotifers. cDNA was prepared from whole cod larvae preceding first feeding and at 1000 each Tuesday and Thursday for the following three weeks. Spatial and temporal expression patterns of PepT1 mRNA were compared between fish consuming the two prey types using in situ hybridization and quantitative real-time PCR. Results indicated that PepT1 mRNA was expressed prior to the onset of exogenous feeding. In addition, PepT1 was expressed throughout the digestive system except the esophagus and sphincter regions. Expression slightly increased following first-feeding and continued to increase throughout the study for larvae feeding on both prey types. When comparing PepT1 expression in larvae larger than 0.15-mg dry mass with expression levels in larvae prior to feeding, no differences were detected for larvae fed rotifers, but the larvae fed zooplankton had significantly greater PepT1 expression at the larger size. In addition, PepT1 expression in the zooplankton fed larvae larger than 0.15-mg dry mass had significantly greater expression than rotifer fed larvae of a similar weight. Switching prey types did not affect PepT1 expression. These results indicate that Atlantic cod PepT1 expression was slightly different relative to dietary treatment during the three weeks following first-feeding. In addition, PepT1 may play an important role in the larval nutrition since it is widely expressed in the digestive tract.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号