首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2014年   1篇
  2010年   1篇
  2007年   1篇
  2004年   1篇
  1996年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Caprylic acid (octanoic acid), has been used for over 50 years as a stabilizer of human albumin during pasteurization. In addition caprylic acid is of great interest, by providing the advantage of purifying mammalian immunoglobulins and clearing viruses infectivity in a single step. Exploiting these two properties, we sequentially used the caprylic acid precipitation and the pasteurization to purify horse hyperimmune globulins used in the manufacturing of Sérocytol. To evaluate the effectiveness of the process for the removal/inactivation of viruses, spiking studies were carried out for each dedicated step. Bovine viral diarrhoea virus (BVDV), pseudorabies virus (PRV), encephalomyocarditis virus (EMCV) and minute virus of mice (MVM) were used for the virological validation. Our data show that the treatment with caprylic acid 5% (v/v) can effectively be used as well to purify or to ensure viral safety of immunoglobulins. Caprylic acid precipitation was very efficient in removing and/or inactivating enveloped viruses (PRV, BVDV) and moderately efficient against non-enveloped viruses (MVM, ECMV). However the combination with the pasteurization ensured an efficient protection against both enveloped and non-enveloped viruses. So that viruses surviving to the caprylic acid precipitation will be neutralized by pasteurization. Significant log reduction were achieved > or =9 log(10) for enveloped viruses and 4 log(10) for non-enveloped viruses, providing the evidence of a margin of viral safety achieved by our manufacturing process. Its a simple and non-expensive manufacturing process of immunoglobulins easily validated that we have adapted to a large production scale with a programmable operating system.  相似文献   
2.
Human antithrombin (AT) is the major inhibitor of blood coagulation and has also been shown to exert anti-inflammatory and anti-angiogenic effects. Pasteurization of pharmaceutical AT products is usually performed at 60 degrees C for 10h in the presence of sodium citrate as stabilizer, sometimes in combination with sucrose. These stabilizers significantly decrease the aggregation and denaturation of AT, but during the pasteurization, a small amount of latent AT (LAT), a partially denatured form, is usually generated, as is an equal amount of another latent form of AT, the so-called prelatent AT (PLAT). The LAT formed during pasteurization has a rather low affinity to heparin and is easily removed by using a second heparin affinity chromatography step in the production process. This is in contrast to the PLAT, which has a slightly lower affinity to heparin than does native AT, which makes it hard to remove. Hence, four commercial products of pasteurized AT were previously shown to contain about 4% of PLAT. In the present work, an alternative pasteurization method is presented, where 2M ammonium sulfate and 50% sucrose are used as stabilizers. During this pasteurization, no, or trace amounts ( < 0.5%), of PLAT may be generated with no formation of aggregates. Moreover, the pasteurized AT has the same specific thrombin-inhibiting activity when compared to incubation in the presence of citrate and sucrose. Heparin affinity high-performance liquid chromatography was used for the determination of PLAT, LAT, and AT.  相似文献   
3.
《Process Biochemistry》2014,49(12):2055-2062
The aim of the present study is to investigate the efficiency of the combined pulsed electric fields and high pressure carbon dioxide (PEF + HPCD) treatment on the Gram-negative pathogen Salmonella Typhimurium in a liquid medium, by means of both plate count technique and flow cytometry (FCM). PEF was applied at two conditions: (1) 1 single pulse of 1 ms length at 30 kV/cm and (2) 12 pulses of 4 ms length at 30 kV/cm, while HPCD at 12 MPa, 22 °C and 35 °C for different treating times (0–45 min). At both temperatures, the application of PEF as HPCD pre-treatment was demonstrated to enhance the inactivation kinetics and to decrease the treatment time to inactivate S. Typhimurium if compared to HPCD alone. Further, the approach based on FCM permitted to investigate the functional status of bacterial cells after PEF and HPCD treatments distinguishing among viable bacteria (considered as intact cells), permeabilised cells and depolarised cells simultaneously. It has been demonstrated that the synergistic effect is due to the electroporation effect of PEF which lead to changes in the cell membrane potential but also in a partial structural damage, favoring the subsequent CO2 penetration into the cells and increasing the inactivation kinetics, thus improving the efficiency of the entire process.  相似文献   
4.
静脉注射免疫球蛋白制备中的病毒灭活   总被引:1,自引:0,他引:1  
在静脉注射免疫球蛋白(IVIG)的制备中,采用有机溶剂结合表面活性剂(S/D)处理或60℃10小时液态加热(巴氏灭活法)的方法对组分Ⅱ(IgG)进行病毒灭活处理,灭活效果用指示病毒进行了评价,结果表明:S/D法可有效灭活脂包膜病毒VSV和Sindbis,巴氏灭活法则对上述病毒以及Vaccinia和Echo病毒均有较好的灭活作用。经病毒灭活处理的免疫球蛋白,在理化及生物学特性上基本未受到不利影响,用两种方法分别处理组分Ⅱ后制备的IVIG,其主要特性指标均符合该制品的有关质量规定。  相似文献   
5.
Although transmission of pandemic influenza A virus H1N1 2009 is still occurring globally, little has been reported about how this outbreak has affected the safety of plasma derivatives. To evaluate the safety of plasma derivatives, dedicated virus clearance processes used during their production were investigated for their effectiveness in eliminating this virus of recent concern. In this study, influenza A virus H1N1 strain A/NWS/33 (H1N1) was chosen as a surrogate. H1N1 was completely inactivated by fraction IV fractionation as well as pasteurization during the manufacture of albumin. H1N1 was also effectively removed into the precipitate by fraction III fractionation and completely inactivated by low pH incubation as well as pasteurization during the manufacture of intravenous immunoglobulin. H1N1 was completely inactivated within 1 min of solvent/detergent treatment using 0.3% tri (n-butyl) phosphate and 1.0% Triton X-100 and also completely inactivated within 10 min of dry-heat treatment at 98 °C during the manufacture of factor VIII. H1N1 was completely removed by virus filtration process using Viresolve NFP filter and also completely inactivated by pasteurization during the manufacture of anti-thrombin III. These results indicate that all the virus clearance processes commonly used have sufficient H1N1 reducing capacity to achieve a high margin of safety.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号