首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   654篇
  免费   77篇
  国内免费   60篇
  791篇
  2024年   3篇
  2023年   21篇
  2022年   8篇
  2021年   16篇
  2020年   19篇
  2019年   30篇
  2018年   25篇
  2017年   21篇
  2016年   26篇
  2015年   26篇
  2014年   36篇
  2013年   26篇
  2012年   22篇
  2011年   41篇
  2010年   37篇
  2009年   40篇
  2008年   47篇
  2007年   55篇
  2006年   45篇
  2005年   23篇
  2004年   22篇
  2003年   21篇
  2002年   21篇
  2001年   20篇
  2000年   16篇
  1999年   13篇
  1998年   11篇
  1997年   6篇
  1996年   6篇
  1995年   7篇
  1994年   8篇
  1993年   12篇
  1992年   5篇
  1991年   7篇
  1990年   3篇
  1989年   6篇
  1988年   4篇
  1987年   3篇
  1986年   4篇
  1985年   1篇
  1984年   4篇
  1983年   1篇
  1982年   8篇
  1981年   3篇
  1980年   2篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1974年   1篇
  1958年   1篇
排序方式: 共有791条查询结果,搜索用时 10 毫秒
1.
The recycling of metals is widely viewed as a fruitful sustainability strategy, but little information is available on the degree to which recycling is actually taking place. This article provides an overview on the current knowledge of recycling rates for 60 metals. We propose various recycling metrics, discuss relevant aspects of recycling processes, and present current estimates on global end‐of‐life recycling rates (EOL‐RR; i.e., the percentage of a metal in discards that is actually recycled), recycled content (RC), and old scrap ratios (OSRs; i.e., the share of old scrap in the total scrap flow). Because of increases in metal use over time and long metal in‐use lifetimes, many RC values are low and will remain so for the foreseeable future. Because of relatively low efficiencies in the collection and processing of most discarded products, inherent limitations in recycling processes, and the fact that primary material is often relatively abundant and low‐cost (which thereby keeps down the price of scrap), many EOL‐RRs are very low: Only for 18 metals (silver, aluminum, gold, cobalt, chromium, copper, iron, manganese, niobium, nickel, lead, palladium, platinum, rhenium, rhodium, tin, titanium, and zinc) is the EOL‐RR above 50% at present. Only for niobium, lead, and ruthenium is the RC above 50%, although 16 metals are in the 25% to 50% range. Thirteen metals have an OSR greater than 50%. These estimates may be used in considerations of whether recycling efficiencies can be improved; which metric could best encourage improved effectiveness in recycling; and an improved understanding of the dependence of recycling on economics, technology, and other factors.  相似文献   
2.
The aim of this article is to quantify the drivers for the changes in raw material consumption (domestic material consumption expressed in the form of all materials extracted and used in the production phase) in terms of technology, which refers to the concept of sustainable production; the product structure of final demand, which refers to the concept of sustainable consumption; and the volume of final demand, which is related to economic growth. We also aim to determine to what extent the technological development and a shift in product structure of the final demand compensate for the growth in final consumption volume. Therefore, we apply structural decomposition analysis (SDA) to the change in raw material consumption (RMC) of the Czech Republic between 2000 and 2007. To present the study in a broader context, we also show other material flow indicators for the Czech Republic for 2000 and 2007. Our findings of SDA show that final demand structure has a very limited effect on the change in material flows. The rapid change in final demand volume was not compensated for crude oil, metal ores, construction materials, food crops, and timber. For the material category of non‐iron metal ores, even the change in technology contributes to an increase in material flows. The largest relative increases are reported for non‐iron metal ores (38%) and construction materials (30%). The main changes in material flows related to the Czech Republic are driven by exports and enabled by imports, the main source of these increased material flows. This emphasizes the increasing role of international trade.  相似文献   
3.
The relative importance of nitrogen inputs from atmospheric deposition and biological fixation is reviewed in a number of diverse, non-agricultural terrestrial ecosystems. Bulk precipitation inputs of N (l–l2 kg N ha–1 yr–1) are the same order of magnitude as, or frequently larger than, the usual range of inputs from nonsymbiotic fixation (< 1=" –=" 5=" kg=" n=">–1 yr–1), especially in areas influenced by industrial activity. Bulk precipitation measurements may underestimate total atmospheric deposition by 30–40% because they generally do not include all forms of wet and dry deposition. Symbiotic fixation generally ranges from 10–160 kg N ha–1 yr–1) in ecosystems where N-fixing species are present during early successional stages, and may exceed the range under unusual conditions.Rates of both symbiotic and nonsymbiotic fixation appear to be greater during early successional stages of forest development, where they have major impacts on nitrogen dynamics and ecosystem productivity. Fates and impacts of these nitrogen inputs are important considerations that are inadequately understood. These input processes are highly variable in space and time, and few sites have adequate comparative information on both nitrogen deposition and fixation.
–  - more intensive studies of total atmospheric deposition, especially of dry deposition, are needed over a wide range of ecosystems;
–  - additional studies of symbiotic fixation are needed that carefully quantify variation over space and time, examine more factors regulating fixation, and focus upon the availability of N and its effects upon productivity and other nutrient cycling processes;
–  - process-level studies of associative N-fixation should be conducted over a range of ecosystems to determine the universal importance of rhizosphere fixation;
–  - further examination of the role of free-living fixation in wood decomposition and soil organic matter genesis is needed, with attention upon spatial and temporal variation; and
–  - investigations of long-term biogeochemical impacts of these inputs must be integrated with process-level studies using modern modelling techniques.
  相似文献   
4.
Synopsis This study tested the hypothesis that visual contact between fish may result in enhanced rates of growth in a schooling fish. Juvenile chum salmon, Oncorhynchus keta, were held singly and reared in isolation or in visual contact with conspecifics. Fish were fed at either a low (6% body weight d–1) or high (20% body weight d–1) ration for 42d. Specific rates of weight gain were 18% greater at low ration and 38% greater at high ration for fish in visual contract with conspecifics than for those held in isolation. The results demonstrate a selective advantage of visual cues associated with schooling behavior and suggest that the efficacy of growth models for schooling fishes may be enhanced by the consideration of social interactions which may facilitate growth.  相似文献   
5.
The behavior of dehydroergosterol in -α-dimyristoylphosphatidylcholine (DMPC) unsonicated multilamellar liposomes was characterized by absorption spectroscopy and fluorescence measurements. Dehydroergosterol exhibited a lowered absorption coefficient in multilamellar liposomes whiel the steady-state fluorescence anisotropy of dehydroergosterol in these membranes decreased significantly with increasing dehydroergosterol concentration, suggesting membrane sterol-sterol interactions. The comparative steady-state anisotropy of 0.9 mole percent dehydroergosterol in multilamellar liposomes was lower than in small unilamellar vesicles suggesting different sterol environments for dehydroergosterol. Dehydroergosterol fluorescence lifetime was relatively independent of membrane sterol content and yielded similar values in sonicated and unsonicated model membranes. In multilamellar liposomes containing 5 mole percent cholesterol, the gel-to-liqui crystalline phase transition of DMPC detected by 0.9 mole percent dehydroergosterol was significantly broadened when compared to the phase transition detected by dehydroergosterol in the absence of membrane cholesterol (Smutzer, G. et al. (1986) Biochim. Biophys. Acta 862, 361–371). In multilamellar liposomes containing 10 mole percent cholesterol, the major fluorescence lifetime of dehydroergosterol did not detect the gel-to-liquid crystalline phase transition of DMPC. Time-correlated fluorescence anisotropy decays of dehydroergosterol in DMPC multilamellar liposomes in the absence and presence of 5 mole percent cholesterol exhibited a single rotational correlation time near one nanosecond that was relatively independent of temperature and low concentrations of membrane cholesterol. The limiting anisotropy of 0.9 mole percent dehydroergosterol decreased above the gel-to-liquid crystalline phase transition in membranes without cholesterol and was not significantly affected by the phase transition in membranes containing 5 mole percent cholesterol. These results suggested hindered rotational diffusion of dehydroergosterol in multilamellar liposomes. Lifetime and time-correlated fluorescence measurements of 0.9 mole percent dehydroergosterol in multilamellar liposomes further suggested this fluorophore was detecting physical properties of the bulk membrane phospholipids in membranes devoid of cholesterol and was detecting sterol-rich regions in membranes of low sterol concentration.  相似文献   
6.
Summary A re-examination of earlier NPK fertilization experiments in Douglas fir stands on sandy soils shows the effects of high nitrogen input by air pollution during the last 10–15 years on plant nutrition at these sites. In 1960, experimental plots showed a positive growth reaction to nitrogen, phosphorus, and potassium fertilization. All suffered from severe phosphorus deficiency in 1984, low phosphorus in the needles was invariably accompanied by a high nitrogen content, with all N/P ratios between 20 and 30. The same conclusion emerges from an independent investigation of nutrient status of a selection of Douglas fir stands. Hence, if stand productivity and a balanced nutrient status of the trees is to be maintained, the increase in atmospheric input of nitrogen calls for supplementary fertilization. Given the current N/P ratios in the needles, a positive growth response to phosphorus fertilization is to be expected.  相似文献   
7.
Bulk inorganic nitrogen deposition was monitored over a period of 3 years at the Bavella Pass (Corsica, France). Annual fluxes range between 126 and 150mol.m–2.d-–1, increasing slightly with annual rainfall. Natural background average concentrations of rain water and associated fluxes were estimated from a classification of rain events into natural (Oceanic and Saharan), polluted and composite. Long range transport of incoming polluted air masses increases the atmospheric wet nitrogen input by at least a factor of 1.6 in this Mediterranean area. Extrapolation of atmospheric dissolved inorganic nitrogen input to the Western Mediterranean leads to fluxes of 80 to l00mol.m–2.d-–1. This atmospheric input is in the same order of magnitude as the inorganic nitrogen riverine input. As a consequence, the nitrogen budget for the Mediterranean has had to be reassessed. Atmospheric wet inorganic nitrogen input is of noticeable importance to marine Mediterranean ecosystems, representing on average 10 to 25% of new production in the Western Basin, with values of up to 60% in oligotrophic zones.  相似文献   
8.
Stahlberg R  Cosgrove DJ 《Planta》1996,200(4):416-425
Slow wave potentials (SWPs) are transient depolarizations which propagate substantial distances from their point of origin. They were induced in the epidermal cells of pea epicotyls by injurious methods such as root excision and heat treatment, as well as by externally applied defined steps in xylem pressure (Px) in the absence of wounding. The common principle of induction was a rapid increase in Px. Such a stimulus appeared under natural conditions after (i) bending of the epicotyl, (ii) wounding of the epidermis, (iii) rewatering of dehydrated roots, and (iv) embolism. The induced depolarization was not associated with a change in cell input resistance. This result and the ineffectiveness of ion channel blockers point to H(+)-pumps rather than ion channels as the ionic basis of the SWP. Stimuli such as excision, heat treatment and pressure steps, which generate SWPs, caused a transient increase in the fluorescence intensity of epicotyls loaded with the pH-indicator DM-NERF, a 2',7'-dimethyl derivative of rhodol, but not of those loaded with the pH indicator 2',7'bis(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF). Matching kinetics of depolarization and pH response identify a transient inactivation of proton pumps in the plasma membrane as the causal mechanism of the SWP. Feeding pump inhibitors to the cut surface of excised epicotyls failed to chemically simulate a SWP; cyanide, azide and 2,4-dinitrophenol caused sustained, local depolarizations which did not propagate. Of all tested substances, only sodium cholate caused a transient and propagating depolarization whose arrival in the growing region of the epicotyl coincided with a transient growth rate reduction.  相似文献   
9.
Industrial ecology (IE) methodologies, such as input/output or material flow analysis and life cycle assessment (LCA), are often used for the environmental evaluation of circular economy strategies. Up to now, an approach that utilizes these methods in a systematic, integrated framework for a holistic assessment of a geographic region's sustainable circular economy potential has been lacking. The approach developed in this study (IE4CE approach) combines IE methodologies to determine the environmental impact mitigation potential of circular economy strategies for a defined geographic region. The approach foresees five steps. First, input/output analysis helps identify sectors with high environmental impacts. Second, a refined analysis is conducted using material flow and LCA. In step 3, circular strategies are used for scenario design and evaluated in step 4. In step 5, the assessment results are compiled and compared across sectors. The approach was applied to a case study of Switzerland, analyzing 8 sectors and more than 30 scenarios in depth. Carbon capture and storage (CCS) from waste incineration, biogas and cement production, food waste prevention in households, hospitality and production, and the increased recycling of plastics had the highest mitigation potential. Most of the scenarios do not influence each other. One exception is the CCS scenarios: waste avoidance scenarios decrease the reduction potential of CCS. A combination of scenarios from different sectors, including their impact on the CCS scenario potential, led to an environmental impact mitigation potential of 11.9 Mt CO2-eq for 2050, which equals 14% of Switzerland's current consumption-based impacts.  相似文献   
10.
Site fidelity—the tendency to return to previously visited locations—is widespread across taxa. Returns may be driven by several mechanisms, including memory, habitat selection, or chance; however, pattern-based definitions group different generating mechanisms under the same label of ‘site fidelity’, often assuming memory as the main driver. We propose an operational definition of site fidelity as patterns of return that deviate from a null expectation derived from a memory-free movement model. First, using agent-based simulations, we show that without memory, intrinsic movement characteristics and extrinsic landscape characteristics are key determinants of return patterns and that even random movements may generate substantial probabilities of return. Second, we illustrate how to implement our framework empirically to establish ecologically meaningful, system-specific null expectations for site fidelity. Our approach provides a conceptual and operational framework to test hypotheses on site fidelity across systems and scales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号