首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2015年   2篇
  2008年   1篇
  2006年   1篇
  2001年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
《Molecular cell》2021,81(17):3623-3636.e6
  1. Download : Download high-res image (170KB)
  2. Download : Download full-size image
  相似文献   
2.
《Molecular cell》2021,81(19):3992-4007.e10
  1. Download : Download high-res image (186KB)
  2. Download : Download full-size image
  相似文献   
3.
4.

Background

In low-copy-number plasmids, the partitioning loci (par) act to ensure proper plasmid segregation and copy number maintenance in the daughter cells. In many bacterial species, par gene homologues are encoded on the chromosome, but their function is much less understood. In the two-replicon, polyploid genome of the hyperthermophilic bacterium Thermus thermophilus, both the chromosome and the megaplasmid encode par gene homologues (parABc and parABm, respectively). The mode of partitioning of the two replicons and the role of the two Par systems in the replication, segregation and maintenance of the genome copies are completely unknown in this organism.

Results

We generated a series of chromosomal and megaplasmid par mutants and sGFP reporter strains and analyzed them with respect to DNA segregation defects, genome copy number and replication origin localization. We show that the two ParB proteins specifically bind their cognate centromere-like sequences parS, and that both ParB-parS complexes localize at the cell poles. Deletion of the chromosomal parAB genes did not apparently affect the cell growth, the frequency of cells with aberrant nucleoids, or the chromosome and megaplasmid replication. In contrast, deletion of the megaplasmid parAB operon or of the parB gene was not possible, indicating essentiality of the megaplasmid-encoded Par system. A mutant expressing lower amounts of ParABm showed growth defects, a high frequency of cells with irregular nucleoids and a loss of a large portion of the megaplasmid. The truncated megaplasmid could not be partitioned appropriately, as interlinked megaplasmid molecules (catenenes) could be detected, and the ParBm-parSm complexes in this mutant lost their polar localization.

Conclusions

We show that in T. thermophilus the chromosomal par locus is not required for either the chromosomal or megaplasmid bulk DNA replication and segregation. In contrast, the megaplasmid Par system of T. thermophilus is needed for the proper replication and segregation of the megaplasmid, and is essential for its maintenance. The two Par sets in T. thermophilus appear to function in a replicon-specific manner. To our knowledge, this is the first analysis of Par systems in a polyploid bacterium.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1523-3) contains supplementary material, which is available to authorized users.  相似文献   
5.
Fung E  Bouet JY  Funnell BE 《The EMBO journal》2001,20(17):4901-4911
The ParA family of proteins is involved in partition of a variety of plasmid and bacterial chromosomes. P1 ParA plays two roles in partition: it acts as a repressor of the par operon and has an undefined yet indispensable role in P1 plasmid localization. We constructed seven mutations in three putative ATP-binding motifs of ParA. Three classes of phenotypes resulted, each represented by mutations in more than one motif. Three mutations created 'super-repressors', in which repressor activity was much stronger than in wild-type ParA, while the remainder damaged repressor activity. All mutations eliminated partition activities, but two showed a plasmid stability defect that was worse than that of a null mutation. Four mutant ParAs, two super-repressors and two weak repressors, were analyzed biochemically, and all exhibited damaged ATPase activity. The super-repressors bound site-specifically to the par operator sequence, and this activity was strongly stimulated by ATP and ADP. These results support the proposal that ATP binding is essential but hydrolysis is inhibitory for ParA's repressor activity and suggest that ATP hydrolysis is essential for plasmid localization.  相似文献   
6.
  相似文献   
7.
In bacteria, ParABS systems and structural maintenance of chromosome (SMC) condensin-like complexes are important for chromosome segregation and organization. The rod-shaped Myxococcus xanthus cells have a unique chromosome arrangement in which a scaffold composed of the BacNOP bactofilins and PadC positions the essential ParBparS segregation complexes and the DNA segregation ATPase ParA in the subpolar regions. We identify the Smc and ScpAB subunits of the SMC complex in M. xanthus and demonstrate that SMC is conditionally essential, with Δsmc or ΔscpAB mutants being temperature sensitive. Inactivation of SMC caused defects in chromosome segregation and organization. Lack of the BacNOP/PadC scaffold also caused chromosome segregation defects but this scaffold is not essential for viability. Inactivation of SMC was synthetic lethal with lack of the BacNOP/PadC scaffold. Lack of SMC interfered with formation of the BacNOP/PadC scaffold while lack of this scaffold did not interfere with chromosome association by SMC. Altogether, our data support that three systems function together to enable chromosome segregation in M. xanthus. ParABS constitutes the basic and essential machinery. SMC and the BacNOP/PadC scaffold have different yet redundant roles in chromosome segregation with SMC supporting individualization of daughter chromosomes and BacNOP/PadC making the ParABS system operate more robustly.  相似文献   
8.
To proliferate efficiently, cells must co‐ordinate division with chromosome segregation. In Bacillus subtilis, the nucleoid occlusion protein Noc binds to specific DNA sequences (NBSs) scattered around the chromosome and helps to protect genomic integrity by coupling the initiation of division to the progression of chromosome replication and segregation. However, how it inhibits division has remained unclear. Here, we demonstrate that Noc associates with the cell membrane via an N‐terminal amphipathic helix, which is necessary for function. Importantly, the membrane‐binding affinity of this helix is weak and requires the assembly of nucleoprotein complexes, thus establishing a mechanism for DNA‐dependent activation of Noc. Furthermore, division inhibition by Noc requires recruitment of NBS DNA to the cell membrane and is dependent on its ability to bind DNA and membrane simultaneously. Indeed, Noc production in a heterologous system is sufficient for recruitment of chromosomal DNA to the membrane. Our results suggest a simple model in which the formation of large membrane‐associated nucleoprotein complexes physically occludes assembly of the division machinery.  相似文献   
9.
The Soj and Spo0J proteins, together with one or more parS sequences, are crucial to chromosome segregation and the progression of cell cycle in many bacteria. In Helicobacter pylori, genes coding for Soj and a plasmid replication-partition-related protein containing a Spo0J or ParB conserved domain, together with two putative parS sites identified in this study, were found to be located within the origin-proximal 20-30% of the circular chromosome. Recombinant H. pylori Spo0J bound specifically to the two putative parS sequences and that of Bacillus subtilis. In addition, hydrolysis of ATP by H. pylori Soj was accelerated in the presence of parS and/or Spo0J. Protein-protein interactions, intracellular levels, and subcellular localization of Soj and Spo0J were analyzed through polyclonal antibodies directed against recombinant Soj and Spo0J. This study was the first implication of the existence of a functional parABS system in H. pylori.  相似文献   
10.
The ParABS system is supposed to be responsible for plasmid partitioning and chromosome segregation in bacteria. ParABS ensures a high degree of fidelity in inheritance by dividing the genetic material equally between daughter cells during cell division. However, the molecular mechanisms underlying the assembly of the partition complex, representing the core of the ParABS system, are still far from being understood. Here we demonstrate that the partition complex is formed via liquid–liquid phase separation. Assembly of the partition complex is initiated by the formation of oligomeric ParB species, which in turn are regulated by CTP-binding. Phase diagrams and in vivo analysis show how the partition complex can further be spatially regulated by parS. By investigating the phylogenetic variation in phase separation and its regulation by CTP, we find a high degree of evolutionary conservation among distantly related prokaryotes. These results advance the understanding of partition complex formation and regulation in general, by confirming and extending recently proposed models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号