首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   0篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2011年   6篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  1999年   1篇
  1997年   1篇
  1992年   1篇
  1990年   1篇
  1988年   3篇
  1986年   1篇
  1980年   2篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
1.
2.
Summary Previous studies have shown that the secretory products of Paneth cells contain antibacterial agents (lysozyme, IgA) that are affected by the bacterial milieu in the intestine. To investigate whether Paneth-cell secretion is controlled via cholinergic mechanisms, the ultrastructure of Paneth cells was studied in four animal groups: (1) germfree (GF) control mice (Jcl: ICR [GN], male, 13 weeks old), (2) GF mice injected subcutaneously with atropine sulfate (200 mg/kg body weight, dissolved in physiological saline 20 mg/ml), (3) ex-GF mice inoculated with feces from specific-pathogen-free (SPF) mice, and (4) ex-GF mice injected with atropine and inoculated with feces from SPF mice. In ex-GF mice inoculated with feces, 70–90% of the Paneth cells showed fewer secretory granules than those from GF mice (p<0.01). Approximately 30% of the Paneth cells had a large vacuole (3–10 m diameter) in the apical cytoplasm. Exocytosed electron-dense material from secretory granules was observed in a few crypt lumens. In ex-GF mice inoculated with feces and given atropine, about 90% of the Paneth cells contained numerous secretory granules, like those in GF control mice, but vacuolated Paneth cells and exocytotic figures were rare; thus the secretion of Paneth cells was blocked by atropine. It is therefore possible that the bacterial milieu in the intestine affects the secretory activity of Paneth cells via cholinergic mechanisms.  相似文献   
3.
4.
Enhancing factor (EF), a mouse phospholipase A2 (PLA2), has been purified from the small intestines, based on its ability to increase the binding of epidermal growth factor in a radioreceptor assay. EF/PLA2 was found to be localized predominantly in the Paneth cells in the small intestines. Whether mouse intestinal EF/PLA2 is identical/similar to mouse secretory PLA2 was to be determined. Phospholipases are known to play a crucial role in the process of inflammation. This paper reports the presence of trace amounts of EF/PLA2 in the peritoneal exudate cells. Western blot analysis of the acid extracts showed the presence of a 14 kDa immunologically cross-reactive protein. RT-PCR analysis using EF specific primers amplified a ∼700 bp product which was further confirmed to be EF-specific by nested PCR analysis and sequencing. Presence of EF in the peritoneal exudate cells could be a unique mode of transport of growth factor modulator to the site of injury to aid in regeneration/cell proliferation of damaged tissue.  相似文献   
5.
Background and Aims:  Chronic gastritis is caused by Helicobacter pylori infection, and gastritis is classified as inflammation, atrophy, and intestinal metaplasia. Detailed pathologic studies have shown that H. pylori settles on the surface of gastric mucosa, and that it is eliminated from metaplastic mucosa. However, its mechanism of natural protection is not well known.
Methods:  Antimicrobial human enteric defensin expression was determined in the RNA and protein levels. Recombinant enteric defensins were produced with a bacterial expression system and their anti- H. pylori activities were assessed by bactericidal assay.
Results:  Human enteric defensin (HD)-5 and HD-6 were detected in Paneth cells, which are observed in the gastric metaplastic mucosa as well as small intestinal epithelia. HD-5 protein was coexpressed with trypsin, which is considered to be an activating enzyme of HD-5. Less H. pylori was observed in the intestinal metaplasia with HD-5 expressing Paneth cells. The recombinant defensins showed killing activity against H. pylori at a low concentration in vitro.
Conclusions:  The human defensins that are expressed in the metaplastic Paneth cells eliminate H. pylori . Metaplastic change may be a purposive development of the human stomach.  相似文献   
6.
潘氏细胞是位于小肠腺底部的浆液性腺上皮细胞,其主要特征是细胞顶部有大量粗大的嗜酸性分泌颗粒,内含防御素、溶菌酶、sIgA等多种抗菌物质。表达于潘氏细胞的NOD2、Toll样受体9、肝癌-肠-胰腺/胰腺炎相关蛋白、RegⅢγ、肿瘤坏死因子仅、粒细胞-巨噬细胞集落刺激因子、白介素-17等也是免疫与炎症反应的重要成分。金属硫蛋白、富半胱氨酸肠蛋白、潘氏细胞锌结合蛋白等金属结合蛋白均分布于潘氏细胞,提示潘氏细胞参与金属代谢。潘氏细胞是构成肠黏膜屏障的重要细胞成分。NOD2单核苷酸多态性与克罗恩病有关。潘氏细胞化生常发生于胃、大肠的炎症与肿瘤病变,其病理意义有待于进一步研究。  相似文献   
7.
The unfolded protein response (UPR) is a signaling pathway from the endoplasmic reticulum (ER) to the nucleus that protects cells from the stress caused by misfolded or unfolded proteins [1, 2]. As such, ER stress is an ongoing challenge for all cells given the central biologic importance of secretion as part of normal physiologic functions. This is especially the case for cells that are highly dependent upon secretory function as part of their major duties. Within mucosal tissues, the intestinal epithelium is especially dependent upon an intact UPR for its normal activities [3]. This review will discuss the UPR and the special role that it provides in the functioning of the intestinal epithelium and, when dysfunctional, its implications for understanding mucosal homeostasis and intestinal inflammation, as occurs in inflammatory bowel disease (IBD).  相似文献   
8.
观察BALB/c小鼠小肠潘氏细胞的分布规律。应用石蜡切片、H&E染色技术和LeicaQwin显微图像处理系统,分别对2 d、4 d、6 d、8 d、10 d BALB/c小鼠小肠内潘氏细胞的形态发育、分布规律进行观察和分析。结果发现,4日龄前的BALB/c小鼠各段小肠中肠腺发育尚不完整,未见有潘氏细胞。6日龄后,潘氏细胞开始出现,数量随日龄增加呈递增趋势增长,各日龄间差异显著(P<0.05)。BALB/c小鼠肠道潘氏细胞存在于小肠,十二指肠和空肠较少,回肠较多,各组(不同日龄/肠段)之间差异显著(P<0.05)。  相似文献   
9.
10.
Intestinal stem cells (ISCs) require well-defined signals from their environment in order to carry out their specific functions. Most of these signals are provided by neighboring cells that form a stem cell niche, whose shape and cellular composition self-organize. Major features of this self-organization can be studied in ISC-derived organoid culture. In this system, manipulation of essential pathways of stem cell maintenance and differentiation results in well-described growth phenotypes.We here provide an individual cell-based model of intestinal organoids that enables a mechanistic explanation of the observed growth phenotypes. In simulation studies of the 3D structure of expanding organoids, we investigate interdependences between Wnt- and Notch-signaling which control the shape of the stem cell niche and, thus, the growth pattern of the organoids. Similar to in vitro experiments, changes of pathway activities alter the cellular composition of the organoids and, thereby, affect their shape. Exogenous Wnt enforces transitions from branched into a cyst-like growth pattern; known to occur spontaneously during long term organoid expansion. Based on our simulation results, we predict that the cyst-like pattern is associated with biomechanical changes of the cells which assign them a growth advantage. The results suggest ongoing stem cell adaptation to in vitro conditions during long term expansion by stabilizing Wnt-activity.Our study exemplifies the potential of individual cell-based modeling in unraveling links between molecular stem cell regulation and 3D growth of tissues. This kind of modeling combines experimental results in the fields of stem cell biology and cell biomechanics constituting a prerequisite for a better understanding of tissue regeneration as well as developmental processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号