首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2004年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Estimating past ocean productivity from ocean sediments often gives different results depending on the measurement used. We have examined a suite of paleoproductivity proxies in latest Miocene–Recent sediments from DSDP Site 532 and ODP Site 1084, two deep-sea sections underlying the Benguela Upwelling System off the Atlantic coast of southern Africa. The productivity history of this system has been previously established via organic carbon concentration, diatom floras and alkenone based estimates of surface water temperature, and shows a change from low productivity in the early Pliocene to sustain high productivity in the late Pliocene–Recent. Each of our samples was split and simultaneously analysed for several proxies of ocean productivity, including organic carbon (TOC%), carbonate, abundance of opaline radiolarians, accumulation rate of benthic foraminifera (BFAR); the radiolarian faunal composition indices Upwelling Radiolarian Index (URI) and the Water Depth Ecology index (WADE); other proxies for opal and carbonate dissolution, plus stable isotopes of benthic foraminifera. Comparisons between proxies in the same measured samples, between sites in downcore plots and to the published productivity record for this region suggest that TOC and radiolarian faunal composition, particularly the WADE index, are good indicators of past productivity, albeit with different sensitivities (log–linear correlation WADE–TOC% r = 0.78, n = 65, p < 0.01). In contrast, carbonate, and carbonate-based proxies such as BFAR primarily reflect changes in dissolution. Radiolarian faunal composition indices do not appear to be affected by bulk opal accumulation or changes in opal preservation. WADE analysis of radiolarian faunas and TOC% measurements appear to be useful proxies for productivity in late Neogene sediments, particularly for sections where opal or carbonate dissolution is significant.  相似文献   
2.
The calcareous nannofossil assemblage from ODP Site 1240 in the equatorial upwelling of the Eastern Pacific was analysed for the last 560 Ka. The chronological framework was set with a combination of isotopic stratigraphy, nannofossil biostratigraphy and one paleomagnetic event.  相似文献   
3.
Faunal analyses of planktonic foraminifera and upper-water temperature reconstructions with the modern analog technique are studied and compared to the magnetic susceptibility and gamma ray logs of ODP Core 999A (western Caribbean) for the past 560 kyr in order to explore changes in paleoceanographic conditions in the western Caribbean Sea. Long-term trends in the percentage abundance of planktonic foraminifera in ODP Core 999A suggest two hydrographic scenarios: before and after 480 ka. High percentage abundances of Neogloboquadrina pachyderma and Globorotalia inflata, low abundances of Globorotalia menardii and Globorotalia truncatulinoides, low diversity, and sea-surface temperatures (SST) under 24 °C are typical characteristics occurring from 480 to 560 ka. These characteristics suggest a “shallow” well-oxygenated upper thermocline and the influx of nutrients by either seasonal upwelling plumes and/or eddy-mediated entrainment. The second scenario occurred after 480 ka, and it is characterized by high and fluctuating percentage abundances of Neogloboquadrina dutertrei, G. truncatulinoides, G. menardii, Globigerinita glutinata, Globigerinella siphonifera, and Globigerinoides ruber; a declining trend in diversity; and large SSTs. These characteristics suggest a steady change from conditions characterized by a “shallow” thermocline and chlorophyll maximum to conditions characterized by a “deep” thermocline (mainly during glacial stages) and by more oligotrophic conditions. The influence of the subtropical North Atlantic on the upper thermocline was apparently larger during glacial stages, thus favoring a deepening of the thermocline, an increase in sea-surface salinity, and a dramatic reduction of nutrients in the Guajira upwelling system. During interglacial stages, the influx of nutrients from the Magdalena River is stronger, thus resulting in a deep chlorophyll maximum and a fresher upper ocean. The eddy entrainment of nutrients is the probable mechanism responsible of transport from the Guajira upwelling and Magdalena River plumes into ODP 999A site.  相似文献   
4.
Calcareous nannoplankton assemblages at Ocean Drilling Program (ODP) Site 1259 on Demerara Rise (western equatorial Atlantic) underwent an abrupt and fundamental turnover across the Paleocene/Eocene Thermal Maximum (PETM) ~55.5 m.y. ago. The PETM is marked by a dissolution interval barren or nearly-barren of nannofossils due to the rapid acidification of the world oceans. Toweius, Fasciculithus, and Chiasmolithus sharply decrease at the onset, whereas Chiasmolithus, Markalius cf. M. apertus, and Neochiasmolithus thrive immediately after the event, which also signals the successive first appearances of Discoaster araneus, Rhomboaster, and Tribrachiatus. The environmental indications of these changes were further investigated by correspondence analysis on quantitative nannofossil counts. The PETM event has been attributed to CO2-forced greenhouse effects. At Site 1259, the elevated pCO2 and subsequent lowered surface-water pH values at the onset of the PETM caused intensive carbonate dissolution, producing the nannofossil-barren interval. The chemically stressed habitats may well have also induced the evolution of ephemeral nannofossil “excursion taxa”, such as Rhomboaster and malformed discoasters (D. araneus and Discoaster anartios). Based on its sudden increase, Markalius cf. M. apertus is considered to have been a local opportunistic species that took advantage of the surface-water changes. At the same time, a presumably higher runoff from continental areas fertilized the western equatorial Atlantic as indicated by an increase in the abundance of r-mode specialists preferring high-nutrient conditions, such as Chiasmolithus, Coccolithus pelagicus, and Hornibrookina arca. Contrasts between the results of this study and previous work at ODP Site 690 in the Southern Ocean, the New Jersey continental margin, and the central paleoequatorial Pacific further demonstrate that the response to the PETM can be influenced by local differences in geologic setting and oceanographic conditions.  相似文献   
5.
Paleoproductivity patterns at the Eocene-Oligocene boundary in southern high latitudes and in the equatorial oceans were synthesized from the literature. Three ODP/DSDP sites from the Southern Ocean (Sites 689, 748 and 511) were compared with three DSDP/ODP sites from the equatorial oceans (Sites 574, 462 and 959). Paleoproductivity was estimated by multiple sedimentological, biological and geochemical proxies. Changes in paleoproductivity at the Eocene-Oligocene boundary mainly took place in the southern high latitudes. At Site 689, the benthic foraminiferal fauna also indicates an increase in seasonality. In equatorial oceans, there are no indications for a shift to higher paleoproductivity at the Eocene-Oligocene boundary. On the contrary at Site 959, sedimentology documents decreasing paleoproductivity in the Oligocene. Major changes in temperature and ocean circulation in southern high latitudes versus only minor changes in the lower latitudes were probably responsible for the geographically different changes in paleoproductivity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号