首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2014年   1篇
  2001年   1篇
排序方式: 共有2条查询结果,搜索用时 187 毫秒
1
1.
Analysis of molecular linkage groups within the soybean (Glycine max L. Merr.) genome reveals many homologous regions, reflecting the ancient polyploidy of soybean. The fragmented arrangement of the duplicated regions suggests that extensive rearrangements, as well as additional duplications, have occurred since the initial polyploidization event. In this study we used comparisons between homoeologous regions in soybean, and the homologous regions in the related diploids Phaseolus vulgaris and Vigna radiata, to elucidate the evolutionary history of the three legume genomes. Our results show that there is not only conservation of large regions of the genomes but that these conserved linkage blocks are also represented twice in the soybean genome. To gain a better understanding of the process of genome evolution in dicots, molecular comparisons have been extended to another well-studied species, Arabidopsis thaliana. Interestingly, the conserved regions we identified in the legume species are also relatively conserved in Arabidopsis. Our results suggest that there is conservation of blocks of DNA between species as distantly related as legumes and brassicas, representing 90 million years of divergence. We also present evidence for an additional, presumably earlier, genome duplication in soybean. These duplicated regions were only recognized by using Arabidopsis as a ’bridging’ species in the genome comparisons. Received: 10 October 2000 / Accepted: 13 January 2001  相似文献   
2.

Background

All modern rosids originated from a common hexapolyploid ancestor, and the genomes of some rosids have undergone one or more cycles of paleopolyploidy. After the duplication of the ancient genome, wholesale gene loss and gene subfunctionalization has occurred. Using the extensin super-gene family as an example, we tracked the differential retention and expansion of ancestral extensin genes in four modern rosids, Arabidopsis, Populus, Vitis and Carica, using several analytical methods.

Results

The majority of extensin genes in each of the modern rosids were found to originate from different ancestral genes. In Arabidopsis and Populus, almost half of the extensins were paralogous duplicates within the genome of each species. By contrast, no paralogous extensins were detected in Vitis and Carica, which have only undergone the common γ-triplication event. It was noteworthy that a group of extensins containing the IPR006706 domain had actively duplicated in Arabidopsis, giving rise to a neo-extensin around every 3 million years. However, such extensins were absent from, or rare in, the other three rosids. A detailed examination revealed that this group of extensins had proliferated significantly in the genomes of a number of species in the Brassicaceae. We propose that this group of extensins might play important roles in the biology and in the evolution of the Brassicaceae. Our analyses also revealed that nearly all of the paralogous and orthologous extensin-pairs have been under strong purifying selection, leading to the strong conservation of the function of extensins duplicated from the same ancestral gene.

Conclusions

Our analyses show that extensins originating from a common ancestor have been differentially retained and expanded among four modern rosids. Our findings suggest that, if Arabidopsis is used as the model plant, we can only learn a limited amount about the functions of a particular gene family. These results also provide an example of how it is essential to learn the origination of a gene when analyzing its function across different plant species.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-612) contains supplementary material, which is available to authorized users.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号