首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2012年   1篇
  2009年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
This study investigates the environmental and biological controls on trace element partitioning and stable isotope composition of modern giant long-lived bivalves (Tridacna gigas) with the aim to use these archives for paleoclimatic reconstructions. Firstly, the intra-shell variability is studied by measuring time equivalent profiles in the different shell layers characterised by different growth rates. Secondly, the inter-site variability is studied by comparing profiles derived from three modern specimens collected in sites across the Indo-Pacific region characterised by different ranges of temperature and productivity.These results show that δ18O profiles are highly reproducible across the shell regardless of significantly different growth rates. Shell δ18O is primarily controlled by water δ18O and temperature. Comparison of intra shell Mg/Ca profiles shows a clear and systematic partitioning where inner layer Mg/Ca values are a least 2–3 times higher than outer layer and hinge areas. Inner layer Mg/Ca shows seasonal oscillations but superimposed on an ontogenetic trend with increasing values and increasing amplitude Mg/Ca oscillations with age. The Sr/Ca profiles do not show clear reproducible seasonal trends in the different shell zones. It is concluded that Mg/Ca and Sr/Ca profiles appear to reflect a combination of biological and environmental controls that will need to be disentangled before using these proxies in paleoclimatic studies.Finally, intra shell Ba/Ca profiles are reproducible in great detail for all modern specimens studied. Inter-site comparison shows that the amplitude and the timing of the Ba/Ca peaks appear to reflect the timing and the amplitude of the chlorophyll peaks associated with phytoplankton blooms at each locality making this tracer a potential paleoproductivity indicator.  相似文献   
2.
Compared to endemics, widespread species are of particular interest to retrace recent evolutionary history. These species have a large population size which provides a clearer genetic signature of past events. Moreover, their wide geographic range increases the potential occurrence of evolutionary events (expansion, divergence, etc.). Here, we used several coalescent-based methods to disentangle the evolutionary history of a widespread amphidromous goby (Sicyopterus lagocephalus), in the light of sea-level variations during the Pleistocene. Using 75 samples recovered from three biogeographic regions (Western Indian Ocean, Melanesia and Polynesia), we analysed a portion of the cytochromeb gene and confirmed three major haplogroups, each specific to a region. Furthermore, we found that: (1) the Melanesian haplogroup was the oldest while the two peripheral regions hosted daughter haplogroups; (2) two centrifugal colonisation events occurred from Melanesia to the periphery, each synchronised with periods of strong paleo-ENSO episodes; (3) the demographic contraction-expansion events were linked to Pleistocene sea-level changes; (4) Melanesia and Polynesia acted as efficient refuges during the Last Glacial Maximum. These results highlight the importance of studying widespread species to better understand the role of climate changes and paleo-oceanography on the evolution of biodiversity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号