首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   4篇
  国内免费   6篇
  112篇
  2023年   2篇
  2022年   2篇
  2021年   1篇
  2020年   6篇
  2019年   7篇
  2018年   5篇
  2017年   1篇
  2015年   4篇
  2014年   8篇
  2013年   7篇
  2012年   9篇
  2011年   3篇
  2010年   9篇
  2009年   8篇
  2008年   5篇
  2007年   7篇
  2006年   6篇
  2005年   1篇
  2004年   2篇
  2001年   2篇
  2000年   1篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1984年   2篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1974年   2篇
排序方式: 共有112条查询结果,搜索用时 0 毫秒
1.
2.
Kinetic and equilibrium studies of the binding of several phenanthridines and acridines to DNA have been performed to investigate the physical processes underlying the direct ligand transfer mechanism of drug-DNA interaction· Substitution of the 6-phenyl ring of dimidium with a p-carboxyl residue, or complete removal of either the 6-substituent or the 3-amino group, does not prevent the phenanthridine chromophore from transferring directly between binding sites. Loss of the aromatic ring increases association rate constants three- to ninefold and enhances dissociation rates by factors of up to 12; the rates of direct transfer and dissociation from site 1 are the most perturbed. The presence of a phenyl ring stabilizes the site 1 complex and lowers the binding constant to site 2. Introduction of the p-carboxyl group does not affect the equilibrium distribution of bound forms but produces equivalent increases (2·5-fold) in forward and reverse rate constants for binding to site 1 and for the direct transfer step. The 3-amino group greatly stabilizes the site 1 complex. Its removal accelerates all kinetic processes except for the reverse transfer step; the transfer rate is enhanced 25-fold and binding to site 2 is increased 12-fold. The dissociation rate from site 1 rises by a factor of 45 and that from site 2 by a factor of 5·8.10-Methyl-9-aminoacridine binds via the direct transfer pathway with rate and equilibrium constants similar to those of the 3-desamino derivative of ethidium. This compound provides the first fully characterized example of an acridine that utilizes bimolecular transfer. By contrast, rivanol (6,9-diamino-2-ethoxyacridine) interacts with DNA via a two-step sequential mechanism analogous to that seen with proflavine, yet its intrinsic association constant is three times higher. This results from tighter ‘external’ attachment to the helix, together with a decrease in equilibrium constant for the insertion step, which is markedly slower than that of proflavine. There appears to be a simple relation between the apparent enthalpy of binding and the number of extracyclic amino substituents on the intercalating chromophore.We propose that the two bound forms that participate in direct ligand transfer represent molecules intercalated via one or other of the grooves of DNA, and that the transfer pathway corresponds to exchange of drug between the wide groove of one helix and the narrow groove of another. The ability to form strongly bound complexes at the surface of the helix appears to play a major role in determining the mechanism of ligand binding.  相似文献   
3.
The PT-digest of bread wheat gliadin was very active in agglutinating undifferentiated human K562(S) cells. This activity was quantitatively, but not qualitatively, similar to that of Con A or WGA. Moreover, Con A-induced cell agglutination was inhibited by mannan and mannose, WGA-induced agglutination by NAG only, and cell agglutination induced by bread wheat gliadin peptides was inhibited by each of these three saccharides. Not only was mannan the most active saccharide in preventing cell agglutination induced by bread wheat gliadin peptides, but it was also able to dissociate agglutinated cells. As compared to the PT- digest of whole bread wheat gliadin, the digest obtained from purified A-gliadin was tenfold more active. The PT-digest of durum wheat gliadin did not show any agglutinating activity.  相似文献   
4.
Ruan H  Yan Z  Sun H  Jiang L 《FEMS yeast research》2007,7(2):209-215
Type 2C protein phosphatase (PP2C) is a monomeric enzyme and requires Mg(2+) or Mn(2+) for its activity. Up to now, seven PP2C-like genes have been identified in the genome of Saccharomyces cerevisiae. However, the protein encoded by the sixth PP2C-like gene, YCR079w, has not been demonstrated to have PP2C activity. In this study, we show that YCR079w confers a rapamycin-resistant function in yeast cells, and we also demonstrate that the YCR079w-encoded protein exhibits characteristics of a typical PP2C. Therefore, YCR079w encodes the sixth PP2C, PTC6, in budding yeast.  相似文献   
5.
The bitter taste perception (associated with the ability or inability to taste phenylthiocarbamide) is mediated by the TAS2R38 gene. Most of the variation in this gene is explained by three common amino-acid polymorphisms at positions 49 (encoding proline or alanine), 262 (alanine or valine) and 296 (valine or isoleucine) that determine two common isoforms: proline–alanine–valine (PAV) and alanine–valine–isoleucine (AVI). PAV is the major taster haplotype (heterozygote and homozygote) and AVI is the major non-taster haplotype (homozygote). Amino acid 49 has the major effect on the distinction between tasters and non-tasters of all three variants. The sense of bitter taste protects us from ingesting toxic substances, present in some vegetables, that can affect the thyroid when ingested in large quantities. Balancing selection has been used to explain the current high non-taster frequency, by maintaining divergent TAS2R38 alleles in humans. We have amplified and sequenced the TAS2R38 amino acid 49 in the virtually uncontaminated Neanderthal sample of El Sidrón 1253 and have determined that it was heterozygous. Thus, this Neanderthal was a taster individual, although probably slightly less than a PAV homozygote. This indicates that variation in bitter taste perception pre-dates the divergence of the lineages leading to Neanderthals and modern humans.  相似文献   
6.
Botulinum neurotoxins (BoNTs) are produced as progenitor toxin complexes (PTCs) by Clostridium botulinum. The PTCs are composed of BoNT and non-toxic neurotoxin-associated proteins (NAPs), which serve to protect and deliver BoNT through the gastrointestinal tract in food borne botulism. HA33 is a key NAP component that specifically recognizes host carbohydrates and helps enrich PTC on the intestinal lumen preceding its transport across the epithelial barriers. Here, we report the crystal structure of HA33 of type B PTC (HA33/B) in complex with lactose at 1.46 Å resolution. The structural comparisons among HA33 of serotypes A–D reveal two different HA33–glycan interaction modes. The glycan-binding pockets on HA33/A and B are more suitable to recognize galactose-containing glycans in comparison to the equivalent sites on HA33/C and D. On the contrary, HA33/C and D could potentially recognize Neu5Ac as an independent receptor, whereas HA33/A and B do not. These findings indicate that the different oral toxicity and host susceptibility observed among different BoNT serotypes could be partly determined by the serotype-specific interaction between HA33 and host carbohydrate receptors. Furthermore, we have identified a key structural water molecule that mediates the HA33/B–lactose interactions. It provides the structural basis for development of new receptor-mimicking compounds, which have enhanced binding affinity with HA33 through their water-displacing moiety.  相似文献   
7.
8.
9.
Four transposition proteins encoded by the bacterial transposon Tn7, TnsA, TnsB, TnsC, and TnsD, mediate its site- and orientation-specific insertion into the chromosomal site attTn7. To establish which Tns proteins are actually present in the transpososome that executes DNA breakage and joining, we have determined the proteins present in the nucleoprotein product of transposition, the posttransposition complex (PTC), using fluorescently labeled Tns proteins. All four required Tns proteins are present in the PTC in which we also find that the Tn7 ends are paired by protein-protein contacts between Tns proteins bound to the ends. Quantification of the relative amounts of the fluorescent Tns proteins in the PTC indicates that oligomers of TnsA, TnsB, and TnsC mediate Tn7 transposition. High-resolution DNA footprinting of the DNA product of transposition attTn7∷Tn7 revealed that about 350 bp of DNA on the transposon ends and on attTn7 contact the Tns proteins. All seven binding sites for TnsB, the component of the transposase that specifically binds the ends and mediates 3′ end breakage and joining, are occupied in the PTC. However, the protection pattern of the sites closest to the Tn7 ends in the PTC are different from that observed with TnsB alone, likely reflecting the pairing of the ends and their interaction with the target nucleoprotein complex necessary for activation of the breakage and joining steps. We also observe extensive protection of the attTn7 sequences in the PTC and that alternative DNA structures in substrate attTn7 that are imposed by TnsD are maintained in the PTC.  相似文献   
10.
Deng-Ke Niu  Jian-Li Cao 《FEBS letters》2010,584(16):3509-3512
In non-mammalian eukaryotes, an abnormally long 3′ untranslated region (UTR) is generally thought to be the definitive signal in the recognition of a premature termination codon (PTC) in nonsense-mediated mRNA decay (NMD). However, because the lengths of 3′ UTRs in normal mRNAs are widely distributed, “abnormally long” is hard to define. Distinct peaks of nucleosome deposition and DNA methylation have recently been found at coding region boundaries. We propose that nucleosomes and DNA methylation just upstream of a normal stop codon are ideal indicators for the position of a normal stop codon and may thus serve as signals in PTC recognition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号