首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2015年   1篇
  2012年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Lysophosphatidic acid (LPA) is a bioactive lipid that serves as an extracellular signaling molecule acting through cognate G protein-coupled receptors designated LPA(1-6) that mediate a wide range of both normal and pathological effects. Previously, LPA(1), a G(αi)-coupled receptor (which also couples to other G(α) proteins) to reduce cAMP, was shown to be essential for the initiation of neuropathic pain in the partial sciatic nerve ligation (PSNL) mouse model. Subsequent gene expression studies identified LPA(5), a G(α12/13)- and G(q)-coupled receptor that increases cAMP, in a subset of dorsal root ganglion neurons and also within neurons of the spinal cord dorsal horn in a pattern complementing, yet distinct from LPA(1), suggesting its possible involvement in neuropathic pain. We therefore generated an Lpar5 null mutant by targeted deletion followed by PSNL challenge. Homozygous null mutants did not show obvious base-line phenotypic defects. However, following PSNL, LPA(5)-deficient mice were protected from developing neuropathic pain. They also showed reduced phosphorylated cAMP response element-binding protein expression within neurons of the dorsal horn despite continued up-regulation of the characteristic pain-related markers Caα(2)δ(1) and glial fibrillary acidic protein, results that were distinct from those previously observed for LPA(1) deletion. These data expand the influences of LPA signaling in neuropathic pain through a second LPA receptor subtype, LPA(5), involving a mechanistically distinct downstream signaling pathway compared with LPA(1).  相似文献   
2.
Elevated spinal extracellular γ-aminobutyric acid (GABA) levels have been described during spinal cord stimulation (SCS)-induced analgesia in experimental chronic peripheral neuropathy. Interestingly, these increased GABA levels strongly exceeded the time frame of SCS-induced analgesia. In line with the former, pharmacologically-enhanced extracellular GABA levels by GABAB receptor agonists in combination with SCS in non-responders to SCS solely could convert these non-responders into responders. However, similar treatment with GABAA receptor agonists and SCS is known to be less efficient. Since K+ Cl cotransporter 2 (KCC2) functionality strongly determines proper GABAA receptor-mediated inhibition, both decreased numbers of GABAA receptors as well as reduced KCC2 protein expression might play a pivotal role in this loss of GABAA receptor-mediated inhibition in non-responders. Here, we explored the mechanisms underlying both changes in extracellular GABA levels and impaired GABAA receptor-mediated inhibition after 30 min of SCS in rats suffering from partial sciatic nerve ligation (PSNL). Immediately after cessation of SCS, a decreased spinal intracellular dorsal horn GABA-immunoreactivity was observed in responders when compared to non-responders or sham SCS rats. One hour later however, GABA-immunoreactivity was already increased to similar levels as those observed in non-responder or sham SCS rats. These changes did not coincide with alterations in the number of GABA-immunoreactive cells. C-Fos/GABA double-fluorescence clearly confirmed a SCS-induced activation of GABA-immunoreactive cells in responders immediately after SCS. Differences in spinal dorsal horn GABAA receptor-immunoreactivity and KCC2 protein levels were absent between all SCS groups. However, KCC2 protein levels were significantly decreased compared to sham PSNL animals. In conclusion, reduced intracellular GABA levels are only present during the time frame of SCS in responders and strongly point to a SCS-mediated on/off GABAergic release mechanism. Furthermore, a KCC2-dependent impaired GABAA receptor-mediated inhibition seems to be present both in responders and non-responders to SCS due to similar KCC2 and GABAA receptor levels.  相似文献   
3.
《Cytokine》2015,72(2):207-214
Neuropathic pain is a debilitating condition caused by damage to the somatosensory nervous system, such as peripheral nerve injury. The immune system, and in particular the adaptive T cell response, plays a key role in mediating such pain. Regulatory T (Treg) cells are a small subpopulation of inhibitory T cells that prevent autoimmunity, limit immunopathology and maintain immune homeostasis. Here, we investigated the effects of conditional depletion of Treg cells on mechanical allodynia and serum cytokines in mice with chronic constriction injury (CCI) of the sciatic nerve, an animal model of neuropathic pain. We demonstrate that CCI induced the infiltration of small numbers of Treg cells within effected neuronal tissue. Utilising the transgenic DEREG (DEpletion of REGulatory T cells) mice, we confirmed effective depletion of Foxp3+ Treg cells by diphtheria toxin injections. Following CCI we observed a transient, though significant, increase in pain hypersensitivity for Treg-depleted DEREG mice compared to non-Treg-depleted mice. Analysis of systemic cytokine levels demonstrated significant changes in serum cytokine expression profiles. In particular, we observed significant increases in systemic concentration of RANTES, IL-2 and IL-5, and significant decreases in IL-12 and IFN-γ in nerve-injured Treg-depleted DEREG mice. Further analysis indicated a substantial increase in the serum concentration of IL-12p40 as a direct result of Treg cell depletion. These results suggest that depletion of Foxp3+ Treg cells promote nerve injury-induced pain hypersensitivity, partially by inducing altered systemic concentrations of cytokines, which may act to regulate neuropathic pain.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号