首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  1999年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The prevalence of paralogous enzymes implies that novel catalytic functions can evolve on preexisting protein scaffolds. The weak secondary activities of proteins, which reflect catalytic promiscuity and substrate ambiguity, are plausible starting points for this evolutionary process. In this study, we observed the emergence of a new enzyme from the ASKA (A Complete Set of E. coli K-12 ORF Archive) collection of Escherichia coli open reading frames. The overexpression of (His)6-tagged glutamine phosphoribosylpyrophosphate amidotransferase (PurF) unexpectedly rescued a ΔtrpF E. coli strain from starvation on minimal media. The wild-type PurF and TrpF enzymes are unrelated in sequence, tertiary structure and catalytic mechanism. The promiscuous phosphoribosylanthranilate isomerase activity of the ASKA PurF variant apparently stems from a preexisting affinity for phosphoribosylated substrates. The relative fitness of the (His)6-PurF/ΔtrpF strain was improved 4.8-fold to nearly wild-type levels by random mutagenesis of purF and genetic selection. The evolved and ancestral PurF proteins were purified and reacted with phosphoribosylanthranilate in vitro. The best evolvant (kcat/KM = 0.3 s− 1 M− 1) was ∼ 25-fold more efficient than its ancestor but > 107-fold less efficient than the wild-type phosphoribosylanthranilate isomerase. These observations demonstrate in quantitative terms that the weak secondary activities of promiscuous enzymes can dramatically improve the fitness of contemporary organisms.  相似文献   
2.
Visfatin/pre-B cell colony-enhancing factor 1 (PBEF)/nicotinamide phosphoribosyltransferase (NAmPRTase) is a multifunctional protein having phosphoribosyltransferase, cytokine and adipokine activities. Originally isolated as a cytokine promoting the differentiation of B cell precursors, it was recently suggested to act as an insulin analog via the insulin receptor. Here, we describe the first crystal structure of visfatin in three different forms: apo and in complex with either nicotinamide mononucleotide (NMN) or the NAmPRTase inhibitor FK-866 which was developed as an anti-cancer agent, interferes with NAD biosynthesis, showing a particularly high specificity for NAmPRTase. The crystal structures of the complexes with either NMN or FK-866 show that the enzymatic active site of visfatin is optimized for nicotinamide binding and that the nicotinamide-binding site is important for inhibition by FK-866. Interestingly, visfatin mimics insulin signaling by binding to the insulin receptor with an affinity similar to that of insulin and does not share the binding site with insulin on the insulin receptor. To predict binding sites, the potential interaction patches of visfatin and the L1-CR-L2 domain of insulin receptor were generated and analyzed. Although the relationship between the insulin-mimetic property and the enzymatic function of visfatin has not been clearly established, our structures raise the intriguing possibility that the glucose metabolism and the NAD biosynthesis are linked by visfatin.  相似文献   
3.
Uracil phosphoribosyltransferase catalyzes the conversion of 5-phosphoribosyl-α-1-diphosphate (PRPP) and uracil to uridine monophosphate (UMP) and diphosphate (PPi). The tetrameric enzyme from Sulfolobus solfataricus has a unique type of allosteric regulation by cytidine triphosphate (CTP) and guanosine triphosphate (GTP). Here we report two structures of the activated state in complex with GTP. One structure (refined at 2.8-Å resolution) contains PRPP in all active sites, while the other structure (refined at 2.9-Å resolution) has PRPP in two sites and the hydrolysis products, ribose-5-phosphate and PPi, in the other sites. Combined with three existing structures of uracil phosphoribosyltransferase in complex with UMP and the allosteric inhibitor cytidine triphosphate (CTP), these structures provide valuable insight into the mechanism of allosteric transition from inhibited to active enzyme. The regulatory triphosphates bind at a site in the center of the tetramer in a different manner and change the quaternary arrangement. Both effectors contact Pro94 at the beginning of a long β-strand in the dimer interface, which extends into a flexible loop over the active site. In the GTP-bound state, two flexible loop residues, Tyr123 and Lys125, bind the PPi moiety of PRPP in the neighboring subunit and contribute to catalysis, while in the inhibited state, they contribute to the configuration of the active site for UMP rather than PRPP binding. The C-terminal Gly216 participates in a hydrogen-bond network in the dimer interface that stabilizes the inhibited, but not the activated, state. Tagging the C-terminus with additional amino acids generates an endogenously activated enzyme that binds GTP without effects on activity.  相似文献   
4.
Site-directed mutagenesis was used to replace Lys68 of the human hypoxanthine phosphoribosyltransferase (HGPRTase) with alanine to exploit this less reactive form of the enzyme to gain additional insights into the structure activity relationship of HGPRTase. Although this substitution resulted in only a minimal (one- to threefold) increase in the Km values for binding pyrophosphate or phosphoribosylpyrophosphate, the catalytic efficiencies (k(cat)/Km) of the forward and reverse reactions were more severely reduced (6- to 30-fold), and the mutant enzyme showed positive cooperativity in binding of alpha-D-5-phosphoribosyl-1-pyrophosphate (PRPP) and nucleotide. The K68A form of the human HGPRTase was cocrystallized with 7-hydroxy [4,3-d] pyrazolo pyrimidine (HPP) and Mg PRPP, and the refined structure reported. The PRPP molecule built into the [(Fo - Fc)phi(calc)] electron density shows atomic interactions between the Mg PRPP and enzyme residues in the pyrophosphate binding domain as well as in a long flexible loop (residues Leu101 to Gly111) that closes over the active site. Loop closure reveals the functional roles for the conserved SY dipeptide of the loop as well as the molecular basis for one form of gouty arthritis (S103R). In addition, the closed loop conformation provides structural information relevant to the mechanism of catalysis in human HGPRTase.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号