首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   3篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
排序方式: 共有13条查询结果,搜索用时 474 毫秒
1.
2.
3.
4.
Skotomorphogenic development is the process by which seedlings adapt to a stressful dark environment. Such metabolic responses to abiotic stresses in plants are known to be regulated in part by microRNAs (miRNAs); however, little is known about the involvement of miRNAs in the regulation of skotomorphogenesis. To identify miRNAs at the genome-wide level in skotomorphogenic seedlings of turnip (Brassica rapa subsp. rapa), an important worldwide root vegetable, we used Solexa sequencing to sequence a small RNA library from seedlings grown in the dark for 4 days. Deep sequencing showed that the small RNAs (sRNAs) were predominantly 21 to 24 nucleotides long. Specifically, 13,319,035 reads produced 359,531 unique sRNAs including rRNA, tRNA, miRNA, small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), and unannotated sRNAs. Sequence analysis identified 96 conserved miRNAs belonging to 36 miRNA families and 576 novel miRNAs. qRT-PCR confirmed that the miRNAs were expressed during skotomorphogenesis similar to the trends shown by the Solexa sequencing results. A total of 2013 potential targets were predicted, and the targets of BrmiR157, BrmiR159 and BrmiR160 were proved to be regulated by miRNA-guided cleavage. These results show that specific regulatory miRNAs are present in skotomorphogenic seedlings of turnip and may play important roles in growth, development, and response to dark environment.  相似文献   
5.
Aim of this work is to provide a detailed comparison of clinical‐pathologic features between well‐differentiated and poorly differentiated tumors according to their BRAF and RASSF1A status. We analyzed RASSF1A methylation by MSP and BRAF mutation by LCRT‐PCR with LightMix® kit BRAF V600E in neoplastic thyroid tissues. Immunohistochemical evaluation of RASSF1A expression was also performed by standard automated LSAB‐HRP technique. An overall higher degree of RASSF1A over‐expression than normal thyroid parenchyma surrounding tumors (P < 0.05) has been found in all malignant well‐differentiated lesions. Moreover, statistically significant higher levels of RASSF1A expression were observed in differentiated cancers associated to an inflammatory autoimmune background (P = 0.01). Amplifiable DNA for LC PCR with LightMix® kit BRAF V600E was obtained in nine PTCs, four FVPTCs, five ATCs, and one control. The V600E mutation was found in 13 of 18 (72%) tumors. BRAF was mutated in 6 of 9 (66%) classical PTC, in 2 of 4 (50%) follicular variant PTC and in all ACs (100%). The overall frequency of RASSF1A promoter methylation observed was 20.5% (9 cases out 44). Hypermethylation of RASSF1A in primary tumors was variable according to histotypes ranging from100% (5/5) in ACs to only 12.5% (4/32) in PTCs. We show a correlation between RASSF1A methylation status and RASSF1A protein expression. Finally, we conclude that BRAF V600E mutation and RASSF1A methylation were pathogenetic event restricted to a subgroup of PTC/FVPTCs in early stage and to clinically aggressive ATCs. J. Cell. Biochem. 114: 1174–1182, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
6.
7.
8.
9.
The degree to which developmental genetic pathways are conserved across distantly related organisms is a major question in biology. In Arabidopsis thaliana (L.) Heynh., inflorescence development is initiated in response to a combination of external and internal floral inductive signals that are perceived across the whole plant, but are integrated within the shoot apical meristem. Recently, it was demonstrated that SQUAMOSA‐PROMOTER BINDING PROTEIN (SBP)‐box proteins regulate A. thaliana flowering time by mediating signals from the autonomous and photoperiod pathways, and by directly activating key genes involved in inflorescence and floral meristem identity, including FRUITFULL (FUL), APETALA1 (AP1) and LEAFY (LFY). In the distantly related core eudicot species Antirrhinum majus L., paralogous SBP‐box proteins SBP1 and SBP2 have likewise been implicated in regulating the AP1 ortholog SQUAMOSA (SQUA). To test the hypothesis that SBP‐box genes are also involved in the floral induction of A. majus, we used a reverse genetic approach to silence SBP1. SBP1‐silenced lines are late to nonflowering, and show reduced apical dominance. Furthermore, expression and sequence analyses suggest that the SBP1‐mediated transition to flowering occurs through the positive regulation of FUL/LFY homologs. Together, these data outline the utility of virus‐induced gene silencing in A. majus, and provide new insight into the conservation of flowering time genetic pathways across core eudicots.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号