首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2011年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
This review speculates on correlations between mass flow in sieve tubes and the distribution of photoassimilates and macromolecular signals. Since micro- (low-molecular compounds) and macromolecules are withdrawn from, and released into, the sieve-tube sap at various rates, distribution patterns of these compounds do not strictly obey mass-flow predictions. Due to serial release and retrieval transport steps executed by sieve tube plasma membranes, micromolecules are proposed to “hop” between sieve element/companion cell complexes and phloem parenchyma cells under source-limiting conditions (apoplasmic hopping). Under sink-limiting conditions, micromolecules escape from sieve tubes via pore-plasmodesma units and are temporarily stored. It is speculated that macromolecules “hop” between sieve elements and companion cells using plasmodesmal trafficking mechanisms (symplasmic hopping). We explore how differential tagging may influence distribution patterns of macromolecules and how their bidirectional movement could arise. Effects of exudation techniques on the macromolecular composition of sieve-tube sap are discussed.  相似文献   
2.
This review explores the relationships between electrical long-distance signalling, Ca2+ influx coincident with propagation of electropotential waves, and cellular responses to Ca2+ influx including the consequences for sieve-tube conductivity and mass flow. Ca2+ influx is inherent to electropotential waves and appears to constitute the key link between rapid physical signals and resultant chemical cascades in sieve tubes and adjacent cells. Members of several channel groups are likely involved the regulation of Ca2+ levels in sieve elements. Among them are hyperpolarization-activated, depolarization-activated, and mechanosensitive Ca2+ channels located in the plasma membrane and Ca2+ dependent Ca2+ channels that reside in ER-membranes of sieve elements. These channels collectively determine intracellular Ca2+ levels in sieve elements and their neighbour cells. The latter cells react to Ca2+ elevation by inducing diverse functional responses dependent on the cell type. If the Ca2+ concentration in sieve elements surpasses a threshold level, dual sieve-plate occlusion by proteins and callose deposition is triggered. Occlusion is reversed when Ca2+ levels subside. Electrical messages may regulate the degree of sieve plate hydraulic conductivity in intact plants by partial sieve-plate occlusion that has a major impact on volume flow through sieve tubes. Furthermore, complete but temporary occlusion of sieve tubes may modify mass flow patterns in intact plants.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号