首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   3篇
  国内免费   4篇
  117篇
  2023年   2篇
  2022年   3篇
  2021年   6篇
  2020年   4篇
  2019年   7篇
  2018年   9篇
  2017年   3篇
  2016年   2篇
  2015年   4篇
  2014年   13篇
  2013年   13篇
  2012年   11篇
  2011年   5篇
  2010年   4篇
  2009年   3篇
  2008年   1篇
  2007年   5篇
  2006年   6篇
  2005年   7篇
  2004年   4篇
  1993年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有117条查询结果,搜索用时 15 毫秒
1.
赤水河流域为生态脆弱区域,现行的流域生态补偿机制存在补偿资金来源单一、总量不足且持续性较差、补偿方式较为单一等问题。将政府和社会资本合作(Public-Private Partnership,PPP)模式应用于建立赤水河流域生态补偿机制,有助于拓宽补偿资金来源、增加资金总量、丰富补偿方式,推动各利益相关方收益共享、风险共担。与传统PPP项目相比,基于流域生态补偿的PPP项目具有更为复杂的风险结构,风险因素的正确识别和合理分担是成功运用PPP模式完善赤水河流域生态补偿机制的关键。识别基于赤水河流域生态补偿的PPP项目运作关键环节,甄别各环节面临的主要风险因素;基于云理论建立风险分担模型;将有关风险在政府和社会资本间进行分担。研究结果表明:(1)基于赤水河流域生态补偿的PPP项目运作过程共包括项目准备、项目实施和项目合同终结等三个阶段、共11个关键环节,各环节共面临26个主要风险因素。(2)分析了有关风险因素可能对赤水河流域生态补偿机制或PPP项目产生的不利影响,并指出了风险引致方。(3)在项目准备阶段,政府拥有绝对的资源优势,以政府为主承担主要风险;在项目实施阶段,项目风险总体上由政府承担为主向社会资本承担为主转移,80%的风险主要由社会资本承担;特许经营期满后,社会资本将项目的经营权(或所有权与经营权同时)向政府移交,在项目合同终结阶段,有关风险再次以政府承担为主。  相似文献   
2.
We have used [2-13C]d-glucose and carbon-13 nuclear magnetic resonance (NMR) spectroscopy to investigate metabolic fluxes through the major pathways of glucose metabolism in intact human erythrocytes and to determine the interactions among these pathways under conditions that perturb metabolism. Using the method described, we have been able to measure fluxes through the pentose phosphate pathway, phosphofructokinase, the 2,3-diphosphoglycerate bypass, and phosphoglycerate kinase, as well as glucose uptake, concurrently and in a single experiment. We have measured these fluxes in normal human erythrocytes under the following conditions: (1) fully oxygenated; (2) treated with methylene blue; and (3) deoxygenated. This method makes it possible to monitor various metabolic effects of stresses in normal and pathological states. Not only has 13C-NMR spectroscopy proved to be a useful method for measuring in vivo flux through the pentose phosphate pathway, but it has also provided additional information about the cycling of metabolites through the non-oxidative portion of the pentose phosphate pathway. Our evidence from experiments with [1-13C]-, [2-13C]-, and [3-13C]d-glucoses indicates that there is an observable reverse flux of fructose 6-phosphate through the reactions catalyzed by transketolase and transaldolase, even in the presence of a net flux through the pentose phosphate pathway.  相似文献   
3.
4.
We reported previously that the expression of Wnt-related genes is lower in osteoporotic hip fractures than in osteoarthritis. We aimed to confirm those results by analyzing β-catenin levels and explored potential genetic and epigenetic mechanisms involved.  相似文献   
5.
The inhibition of hepatic glycogen-associated protein phosphatase-1 (PP1-G(L)) by glycogen phosphorylase a prevents the dephosphorylation and activation of glycogen synthase, suppressing glycogen synthesis when glycogenolysis is activated. Here, we show that a peptide ((280)LGPYY(284)) comprising the last five amino acids of G(L) retains high-affinity interaction with phosphorylase a and that the two tyrosines play crucial roles. Tyr284 deletion abolishes binding of phosphorylase a to G(L) and replacement by phenylalanine is insufficient to restore high-affinity binding. We show that a phosphorylase inhibitor blocks the interaction of phosphorylase a with the G(L) C-terminus, suggesting that the latter interaction could be targeted to develop an anti-diabetic drug.  相似文献   
6.
Actinomycetes are one of the most valuable sources of natural products with industrial and medicinal importance. After more than half a century of exploitation, it has become increasingly challenging to find novel natural products with useful properties as the same known compounds are often repeatedly re-discovered when using traditional approaches. Modern genome mining approaches have led to the discovery of new biosynthetic gene clusters, thus indicating that actinomycetes still harbor a huge unexploited potential to produce novel natural products. In recent years, innovative synthetic biology and metabolic engineering tools have greatly accelerated the discovery of new natural products and the engineering of actinomycetes. In the first part of this review, we outline the successful application of metabolic engineering to optimize natural product production, focusing on the use of multi-omics data, genome-scale metabolic models, rational approaches to balance precursor pools, and the engineering of regulatory genes and regulatory elements. In the second part, we summarize the recent advances of synthetic biology for actinomycetal metabolic engineering including cluster assembly, cloning and expression, CRISPR/Cas9 technologies, and chassis strain development for natural product overproduction and discovery. Finally, we describe new advances in reprogramming biosynthetic pathways through polyketide synthase and non-ribosomal peptide synthetase engineering. These new developments are expected to revitalize discovery and development of new natural products with medicinal and other industrial applications.  相似文献   
7.
辜玉萍  陈蕾  李千音 《生物工程学报》2020,36(10):2151-2161
肾脏是人体重要器官,肾脏发育对肾脏的形成和功能至关重要,其中后肾间充质细胞 (Metanephric mesenchyme,MM) 间质-上皮转化 (Mesenchymal-epithelial transition,MET) 是肾单位形成的关键环节。qRT-PCR和Western blotting实验检测蛋白质磷酸酶3催化亚基α (Protein phosphatase 3 catalytic subunit alpha,PPP3CA) 在不同状态MM细胞株mK3、mK4中的表达谱及对MET标志蛋白调控作用;采用慢病毒包装方式构建稳定敲低PPP3CA的mK4细胞株;采用CCK-8、EdU实验、细胞划痕实验、流式细胞技术分别检测PPP3CA对上皮样后肾间充质细胞株mK4细胞生长、迁移、凋亡的调控作用。PPP3CA在mK4细胞中表达量较间质样后肾间充质细胞mK3更高,敲低PPP3CA后,检测MET标志物及细胞生物学行为,结果显示敲低PPP3CA显著上调上皮细胞标志物E-cadherin表达,促进MET过程,且促进细胞凋亡,抑制细胞增殖和迁移。此外,敲低PPP3CA促进ERK1/2磷酸化,提示PPP3CA生物学功能的调控机制可能与其去磷酸化ERK1/2蛋白相关。以上结果提示PPP3CA在MM细胞MET转化和生物学行为调节中发挥重要功能,为发现和解析肾发育过程中潜在的关键调节因子提供了新的理论基础。  相似文献   
8.
Li S  Li X  Li J  Deng X  Li Y 《Steroids》2007,72(13):875-880
BACKGROUND: Platelets play a crucial role in the development of arterial thrombosis and other pathophysiologies leading to clinical ischemic events. Defective regulation of platelet activation/aggregation is a predominant cause for arterial thrombosis. The purposes of our study are to assess the effect of androgen at physiological concentration via its receptor on oxidative-stress-induced platelet aggregation and to further elucidate the possible mechanism. METHODS AND RESULTS: Plasma dihydrotestosterone (DHT) was determined by ELISA using a commercially available kit. Platelet aggregometer was used to measure platelet aggregation. The contents of thromboxane B(2) (TXB(2)) were assayed with radio-immunoassay. Our results showed that addition of DHT (2 nM) significantly inhibited platelet aggregation induced by hydrogen peroxide (H(2)O(2)) (10 mM, 25 mM) in PRP diluted with Tyrode's buffer. Moreover, H(2)O(2)-induced platelet aggregation decreased in sham-operated rats. However, H(2)O(2)-induced platelet aggregation significantly increased in castrated rats. Replacement of DHT inhibited H(2)O(2)-induced platelet aggregation in castrated rats. After PRP was pretreated with flutamide, H(2)O(2)-induced platelet aggregation increased in castrated rats again. Presence of DHT (2 nM) obviously inhibited H(2)O(2)-induced thromboxane A(2) (TXA(2)) release in castrated rats. Pretreatment of DHT and flutamide increased H(2)O(2)-stimulated TXA(2) release from platelet in castrated rats again. Castration caused a significant reduction in plasma testosterone and DHT levels, whereas DHT replaced at a dose of 0.25 mg/rat restored the circulating DHT to physiological levels, without being altered by treatment with flutamide. The plasma TXB(2) increased in castrated rats as compared with that in sham-operated rats. Replacement with DHT reduced plasma TXB(2) contents in castrated rats. However, flutamide supplementation increased plasma contents of TXB(2) in castrated rats again. CONCLUSION: Androgen at physiological doses via its receptor inhibits oxidative-stress-induced platelet aggregation, which is associated with the reduction of TXA(2) release from platelets.  相似文献   
9.
Cell proliferation is notably dependent on energy supply and generation of reducing equivalents in the form of NADPH for reductive biosynthesis. Blockage of pathways generating energy and reducing equivalents has proved successful for cancer treatment. We have previously reported that isomeric Zn(II) N-methylpyridylporphyrins (ZnTM-2(3,4)-PyP4+) can act as photosensitizers, preventing cell proliferation and causing cell death in vitro. The present study demonstrates that upon illumination, ZnTM-3-PyP inactivates glucose-6-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, lactate dehydrogenase, NADP+ -linked isocitrate dehydrogenase, aconitase, and fumarase in adenocarcinoma LS174T cells. ZnTM-3-PyP4+ was significantly more effective than hematoporphyrin derivative (HpD) for inactivation of all enzymes, except aconitase and isocitrate dehydrogenase. Enzyme inactivation was accompanied by aggregation, presumably due to protein cross-linking of some of the enzymes tested. Inactivation of metabolic enzymes caused disruption of cancer cells' metabolism and is likely to be one of the major reasons for antiproliferative activity of ZnTM-3-PyP.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号