首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  2020年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2008年   3篇
  2006年   1篇
  1985年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
  1. Download : Download high-res image (254KB)
  2. Download : Download full-size image
Highlights
  • •Liver Mallory-Denk-Body inducers elicited an IκBα-loss and NF-κB-activation.
  • •IκBα-loss was due to its sequestration into insoluble cytoplasmic aggregates.
  • •Four proteomic approaches identified 10 IκBα-interacting/aggregating proteins.
  • •Nup153/RanBP2-aggregation prevented IκBα nuclear entry for ending NF-κB-activation.
  相似文献   
2.
The chloroplast-localized NADPH-dependent thioredoxin reductase (NTRC) has been found to be able to reduce hydrogen peroxide scavenging 2-Cys peroxiredoxins. We show that the Arabidopsis ntrc mutant is perturbed in chlorophyll biosynthesis and accumulate intermediates preceding protochlorophyllide formation. A specific involvement of NTRC during biosynthesis of protochlorophyllide is indicated from in vitro aerobic cyclase assays in which the conversion of Mg-protoporhyrin monomethyl ester into protochlorophyllide is stimulated by addition of the NTRC/2-Cys peroxiredoxin system. These findings support the hypothesis that this NADPH-dependent hydrogen peroxide scavenging system is particularly important during periods with limited reducing power from photosynthesis, e.g. under chloroplast biogenesis.  相似文献   
3.

Background

Malaria is an extremely devastating disease that continues to affect millions of people each year. A distinctive attribute of malaria infected red blood cells is the presence of malarial pigment or the so-called hemozoin. Hemozoin is a biocrystal synthesized by Plasmodium and other blood-feeding parasites to avoid the toxicity of free heme derived from the digestion of hemoglobin during invasion of the erythrocytes.

Scope of review

Hemozoin is involved in several aspects of the pathology of the disease as well as in important processes such as the immunogenicity elicited. It is known that the once best antimalarial drug, chloroquine, exerted its effect through interference with the process of hemozoin formation. In the present review we explore what is known about hemozoin, from hemoglobin digestion, to its final structural analysis, to its physicochemical properties, its role in the disease and notions of the possible mechanisms that could kill the parasite by disrupting the synthesis or integrity of this remarkable crystal.

Major conclusions

The importance and peculiarities of this biocrystal have given researchers a cause to consider it as a target for new antimalarials and to use it through unconventional approaches for diagnostics and therapeutics against the disease.

General significance

Hemozoin plays an essential role in the biology of malarial disease. Innovative ideas could use all the existing data on the unique chemical and biophysical properties of this macromolecule to come up with new ways of combating malaria.  相似文献   
4.
Liu X  Du Q  Wang Z  Zhu D  Huang Y  Li N  Wei T  Xu S  Gu L 《The Journal of biological chemistry》2011,286(17):14922-14931
EfeB/YcdB is a member of the dye-decolorizing peroxidase (DyP) protein family. A recent study has shown that this protein can extract iron from heme without breaking the tetrapyrrole ring. We report the crystal structure of EfeB from Escherichia coli O157 bound to heme at 1.95 Å resolution. The EfeB monomer contains two domains. The heme molecule is located in a large hydrophobic pocket in the C-terminal domain. A long loop connecting the two domains extensively interacts with the heme, which is a distinctive structural feature of EfeB homologues. A large tunnel formed by this loop and the β-sheet of C-terminal domain provides a potential cofactor/substrate binding site. Biochemical data show that the production of protoporphyrin IX (PPIX) is closely related to the peroxidation activity. The mutant D235N keeps nearly the same activity of guaiacol peroxidase as the wild-type protein, whereas the corresponding mutation in the classic DyP protein family completely abolished the peroxidation activity. These results suggest that EfeB is a unique member of the DyP protein family. In addition, dramatically enhanced fluorescence excitation and emission of EfeB-PPIX was observed, implying this protein may be used as a red color fluorescence marker.  相似文献   
5.
Titanium oxide (Ti(O)) xerogel films functionalized by protoporphyrin IX (PPIX) and ferrocene carboxylic acid (FCA) were deposited on indium tin oxide (ITO) electrodes following a sol-gel synthesis. PPIX and FCA were first complexed to titanium oxide precursors, which were then subjected to hydrolysis to obtain a homogenous Ti(O) polymeric network gel doped with PPIX and FCA. The Ti(O) film cast on the ITO electrode has been characterized by UV-Vis absorption, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy and cyclic voltammetry. Illumination of the PPIX doped Ti(O) films on the ITO electrode immersed in aqueous electrolytes onsets photoinduced electron transfer reactions, and a cathodic photocurrent was observed in most cases. This photocurrent response was investigated in detail using a kinetic model. Preliminary investigations of oxygen reduction, lithium and proton insertion into the Ti(O) film have also been carried out.  相似文献   
6.
Here, we show that hypochlorous acid (HOCl), a potent neutrophil-generated oxidant, can mediate destruction of free heme (Ht) and the heme precursor, protoporphyrin IX (PPIX). Ht displays a broad Soret absorbance peak centered at 365 and 394 nm, indicative of the presence of monomer and μ-oxo-dimer. Oxidation of Ht by HOCl was accompanied by a marked decrease in the Soret absorption peak and release of free iron. Kinetic measurements showed that the Ht-HOCl reaction was triphasic. The first two phases were HOCl concentration dependent and attributable to HOCl binding to the monomeric and dimeric forms. The third phase was HOCl concentration independent and attributed to Ht destruction with the release of free iron. HPLC and LC-ESI-MS analyses of the Ht-HOCl reaction revealed the formation of a number of degradation products, resulting from the cleavage or modification of one or more carbon-methene bridges of the porphyrin ring. Similar studies with PPIX showed that HOCl also mediated tetrapyrrole ring destruction. Collectively, this work demonstrates the ability of HOCl to modulate destruction of heme, through a process that occurs independent of the iron molecule that resides in the porphyrin center. This phenomenon may play a role in HOCl-mediated oxidative injury in pathological conditions.  相似文献   
7.
Targeted inhibition of multidrug ABCG2 transporter is believed to improve cancer therapeutics. However, the consequences of ABCG2 inhibition have not been systematically evaluated since ABCG2 is expressed in several organs including the liver. Here, we demonstrate that ABCG2-deficient hepatocytes have increased amounts of fragmental mitochondria accompanied by disruption of mitochondrial dynamics and functions. This disruption was due to ABCG2 knockout elevating intracellular protoporphyrin IX, which led to upregulation of DRP-1-mediated mitochondrial fission. The finding that ABCG2 deficiency can generate dysfunctional mitochondria in hepatocytes raises concerns regarding the systematic use of ABCG2 inhibitor in cancer patients.  相似文献   
8.
Protoporphyrin IX (PPIX) lipids were synthesized by introducing a long alkyl chain, such as C13, C15, and C17, at each vinyl group on PPIX via hydrobromination. The PPIX lipids exhibited a water-soluble property by forming their micelles in water and the PPIX–lipid micelles showed relatively low cytotoxicity toward HeLa cells (IC50 = 151.7–379.9 μM) without light irradiation. PL-C17 liposomes (post-inserted liposomes) were readily prepared by adding PL-C17 micelle solution to the liposome solution. The IC50 values of PPIX, PL-C17 micelles, and PL-C17 liposomes toward HeLa cells were 0.53, 5.65, and 12.9 μM, respectively, after irradiation with a xenon lamp in the 400–800 nm range for 2 min. PL-C17 liposomes were selectively accumulated in the Golgi apparatus in cells.  相似文献   
9.
In humans, heme iron is the most abundant iron source, and bacterial pathogens such as Staphylococcus aureus acquire it for growth. IsdB of S. aureus acquires Fe(III)-protoporphyrin IX (heme) from hemoglobin for transfer to IsdC via IsdA. These three cell-wall-anchored Isd (iron-regulated surface determinant) proteins contain conserved NEAT (near iron transport) domains. The purpose of this work was to delineate the mechanism of heme binding and transfer between the NEAT domains of IsdA, IsdB, and IsdC using a combination of structural and spectroscopic studies. X-ray crystal structures of IsdA NEAT domain (IsdA-N1) variants reveal that removing the native heme-iron ligand Tyr166 is compensated for by iron coordination by His83 on the distal side and that no single mutation of distal loop residues is sufficient to perturb the IsdA-heme complex. Also, alternate heme-iron coordination was observed in structures of IsdA-N1 bound to reduced Fe(II)-protoporphyrin IX and Co(III)-protoporphyrin IX. The IsdA-N1 structural data were correlated with heme transfer kinetics from the NEAT domains of IsdB and IsdC. We demonstrated that the NEAT domains transfer heme at rates comparable to full-length proteins. The second-order rate constant for heme transfer from IsdA-N1 was modestly affected (< 2-fold) by the IsdA variants, excluding those at Tyr166. Substituting Tyr166 with Ala or Phe changed the reaction mechanism to one with two observable steps and decreased observed rates > 15-fold (to 100-fold excess IsdC). We propose a heme transfer model wherein NEAT domain complexes pass heme iron directly from an iron-coordinating Tyr of the donor protein to the homologous Tyr residues of the acceptor protein.  相似文献   
10.
Bisthiolato-hemin complexes exhibiting "two split Soret bands" at 370 and 460 nm, classified into "hyperporphyrin spectrum" was prepared with naturally occurring porphyrins (Fe(III)protoporphyrin IX and its dimethyl ester), thioglycolate esters, and tetramethylammonium hydroxide in organic solvents. The structure of the complexes was characterized by electronic absorption and electron spin resonance (ESR) spectrometries. These complexes were stable under air at room temperature, their apparent half-lives being about 30 min monitored by the intensities of the two Soret bands. Thus the bisthiolato-hemin complex containing thioglycolate ester was shown to be a model for the cytochrome P450(P450)-thiolato binding complex. Ligand exchange reactions of the bisthiolato-hemin complex with imidazole or methanol indicated that the intermediate species are stabilized as thiolato-hemin-imidazole or -methanol complexes. The latter intermediate complex was suggested to be a good model for low-spin ferric P450 as characterized by distinct beta- and alpha-bands at 530 and 560 nm, respectively, as well as a single Soret peak at approximately 410 nm. The result of the analysis on ESR g values and crystal field parameters for the bisthiolato-hemin, thiolato-hemin-imidazole, and thiolato-hemin-oxygen ligand complexes comparing with those for P450 itself and the ligand binding complexes revealed that the sixth ligand trans to the fifth thiolato ligand of the low-spin ferric P450 can be an oxygen atom of water molecule.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号