首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   1篇
  国内免费   1篇
  2018年   2篇
  2016年   1篇
  2014年   6篇
  2013年   6篇
  2011年   13篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1994年   4篇
  1993年   1篇
  1988年   1篇
排序方式: 共有50条查询结果,搜索用时 296 毫秒
1.
Stomata formed at high relative air humidity (RH) close less as leaf dries; an effect that varies depending on the genotype. We here quantified the contribution of each stomatal response characteristic to the higher water loss of high RH-grown plants, and assessed the relationship between response characteristics and intraspecific variation in stomatal size. Stomatal size (length multiplied by width), density and responsiveness to desiccation, as well as pore dimensions were analyzed in ten rose cultivars grown at moderate (60%) or high (85%) RH. Leaf morphological components and transpiration at growth conditions were also assessed. High growth RH resulted in thinner (11%) leaves with larger area. A strong positive genetic correlation of daytime and nighttime transpiration at either RH was observed. Stomatal size determined pore area (r = 0.7) and varied by a factor of two, as a result of proportional changes in length and width. Size and density of stomata were not related. Following desiccation, high RH resulted in a significantly lower (6–19%) decline of transpiration in three cultivars, whereas the relative water content (RWC) of high RH-expanded leaflets was lower (29–297%) in seven cultivars. The lower RWC of these leaflets was caused by (a) higher (33–72%) stable transpiration and/or (b) lower (12–143%) RWC at which this stable transpiration occurred, depending on the cultivar. Stomatal size was significantly correlated with both characteristics (r = 0.5 and -0.7, respectively). These results indicate that stomatal size explains much of the intraspecific variation in the regulation of transpiration upon water deprivation on rose.  相似文献   
2.
HvLhcb1 a major light-harvesting chlorophyll a/b-binding protein in barley, is a critical player in sustainable growth under Fe deficiency. Here, we demonstrate that Fe deficiency induces phosphorylation of HvLhcb1 proteins leading to their migration from grana stacks to stroma thylakoid membranes. HvLhcb1 remained phosphorylated even in the dark and apparently independently of state transition, which represents a mechanism for short-term acclimation. Our data suggest that the constitutive phosphorylation-triggered translocation of HvLhcb1 under Fe deficiency contributes to optimization of the excitation balance between photosystem II and photosystem I, the latter of which is a main target of Fe deficiency.  相似文献   
3.
Canopy tree recruitment is inhibited by evergreen shrubs in many forests. In the southern Appalachian mountains of the USA, thickets of Rhododendron maximum L. restrict dominant canopy tree seedling survival and persistence. Using R. maximum as a model system, we examined available light under the thickets and the photosynthetic responses of seedlings of canopy tree species. We tested the hypothesis that the additional shading from under R. maximum drives carbon gain in seedlings below the threshold for growth and survival. A reduction in light under the thicket was found where canopy openness (derived from canopy photographs) under R. maximum was half the amount measured in forest without R. maximum. R.␣maximum also reduced direct radiation by 50% and diffuse radiation by 12–29% compared to forest without the shrub layer. Mean mid-day PPFD (photosynthetically active photon flux density between 1000 and 1400 h) under R. maximum (obtained from quantum sensors) was below 10 mol m−2 s−1 on both clear and overcast days and the amount of sunflecks greater than 10 mol m−2 s−1 PPFD was only 0–20 min per day. In contrast, forest without R. maximum received a mean PPFD of 18–25 mol m−2 s−1 on clear days and a cumulative sunfleck duration of 100–220 min per day in all sky conditions. Consistent with light availability between the sites, daily carbon gain in Quercus rubra L. seedlings was lower in forest with R. maximum compared to forest where the shrub was absent. The presence of the shrub layer also significantly suppressed average mid-day photosynthesis of both Q. rubra and Prunus serotina Ehrt. seedlings on 8 out of 11 measurement dates. However, parameters derived from light response curves between seedlings growing in forest sites with or without a thicket of R. maximum was significantly different only in A max (maximum photosynthetic rate), indicating a lack of further acclimation to the deeper shade under R. maximum. While the additional shade cast by R. maximum is sufficient to prevent the regeneration of tree seedlings under this shrub, there was sufficient heterogeneity in light under the thicket to imply that deep shade only partially explains the complete inhibition of regenerating canopy trees under R. maximum.  相似文献   
4.
Boucher  J.-F.  Bernier  P. Y.  Munson  A. D. 《Plant and Soil》2001,236(2):165-174
A greenhouse experiment was set up during one growing season to test the hypothesis that soil temperature controls a significant part of the light response of eastern white pine (Pinus strobus L.) seedlings that is observed in the field. The experimental design was a three by three factorial split-plot design, with three levels of light availability: 10%, 40% and 80% of full light; and three levels of soil temperature: 16 °C, 21 °C, and 26 °C in the soil at midday. The results show significant interactions between light and soil temperature factors on several variables (gas exchange, root growth, leaf-mass ratio and leaf–mass per unit area), but not on shoot dry mass. These interactions indicate that, in the field, a significant proportion of the light response of young eastern white pine could result from changes in soil temperature, especially under conditions of limiting water availability. Our results suggest that soil temperature must be taken explicitly into account as a driving variable when relating the growth of young eastern white pine to photosynthetic radiation.  相似文献   
5.
Photoinhibition is caused by an imbalance between the rates of the damage and repair cycle of photosystem II D1 protein in thylakoid membranes. The PSII repair processes include (i) disassembly of damaged PSII-LHCII supercomplexes and PSII core dimers into monomers, (ii) migration of the PSII monomers to the stroma regions of thylakoid membranes, (iii) dephosphorylation of the CP43, D1 and D2 subunits, (iv) degradation of damaged D1 protein, and (v) co-translational insertion of the newly synthesized D1 polypeptide and reassembly of functional PSII complex. Here, we studied the D1 turnover cycle in maize mesophyll and bundle sheath chloroplasts using a protein synthesis inhibitor, lincomycin. In both types of maize chloroplasts, PSII was found as the PSII-LHCII supercomplex, dimer and monomer. The PSII core and the LHCII proteins were phosphorylated in both types of chloroplasts in a light-dependent manner. The rate constants for photoinhibition measured for lincomycin-treated leaves were comparable to those reported for C3 plants, suggesting that the kinetics of the PSII photodamage is similar in C3 and C4 species. During the photoinhibitory treatment the D1 protein was dephosphorylated in both types of chloroplasts but it was rapidly degraded only in the bundle sheath chloroplasts. In mesophyll chloroplasts, PSII monomers accumulated and little degradation of D1 protein was observed. We postulate that the low content of the Deg1 enzyme observed in mesophyll chloroplasts isolated from moderate light grown maize may retard the D1 repair processes in this type of plastids.  相似文献   
6.
Question: Does understory vegetation cover and richness decline along a gradient of increasing Juniperus virginiana midstory canopy cover and is that decline best correlated with litter accumulation? Location: Cross Timbers Forest in Payne County, OK, USA. Methods: We measured vegetation in forest gaps as well as forest areas without J. virginiana, at the inner and outer edge of J. virginiana canopies and near J. virginiana trunks (200 plots) and compared vegetation differences among location to light, litter, soil and microclimate variables. Results: Species richness (11 spp m?2 to 6 spp m?2) and summer vegetation cover (53.3% to 12.7%) declined with proximity to trunks. Regression indicated that richness declines (R2=0.08) and cover (R2=0.18) were best correlated with J. virginiana litter accumulation. Partial canonical correspondence analysis (pCCA) revealed two strong canonical axes, one related to litter/light and another to cover of Quercus spp. versus J. virginiana. Tree seedlings and woody vines dominated near J. virginiana. Forbs, graminoids and Quercus spp. seedlings were more common in areas without J. virginiana. Conclusions: Increasing J. virginiana and consequent litter additions alter understory biomass and composition and, through inhibiting Quercus spp. recruitment, may lead to changes in overstory composition. Decreases in herbaceous litter, which historically contributed to fuel accumulation, may have positive feedback effects on midstory encroachment by reducing the potential for prescribed burning.  相似文献   
7.
An optode device for net-photosynthesis measurements, based on oxygen-depending quenching of fluorescence from O2-specific sensors, and PAM fluorometry have been used to study diurnal courses of net-photosynthesis and the Fv/Fm ratio of the submerged plant Lagarosiphon major. Plants were pre-cultivated and studied in large mesocosm flow-through outdoor tanks under 50% and 80% shade cloth, respectively. Growth under the different shade cloths resulted in similar light compensation points (∼20 μmol photons m−2 s−1), but strongly different light saturation levels, with about 150 μmol m−2 s−1 for plants grown under 80% shade cloth and about 350 μmol m−2 s−1 for plants grown under 50% shade cloth. Plants under both growth conditions showed a transient reduction of the maximum Fv/Fm value in the afternoon (down to 70% of the morning control values under 80% shade cloth and down to 85% under 50% shade cloth), which was not accompanied by a reduction of the net photosynthetic rate. This indicated that the fluorescence parameter Fv/Fm must not be a reliable indicator of the rate of photosynthesis under all conditions. The new photo-optical device became evidenced as a valuable tool not only for laboratory experiments, but also for field studies of gas exchange of submerged plants.  相似文献   
8.
Alterations in temperature adaptation processes and changes in the content of stress-related compounds, polyamines and salicylic acid were evaluated in Atnoa1 (NO-associated 1) Arabidopsis mutant. The Fv/Fm chlorophyll-a fluorescence induction parameter and the actual quantum yield were significantly lower in the Atnoa1 mutant than in the wild-type. In the wild-type Col-0, the fastest increase in the non-photochemical quenching (NPQ) occurred in plants pre-treated at low temperature (4 °C), while the slowest was in those adapted to 30 °C. The NPQ showed not only a substantially increased level in the light-adapted state, but also more rapid light induction after the dark-adapted state in the Atnoa1 mutant than in the wild-type. The results of freezing tests indicated that both the wild-type and the mutant had better freezing tolerance after cold hardening, since no significant differences were found between the genotypes. The level of putrescine increased substantially, while that of spermine decreased by the end of the cold-hardening (4 °C, 4 d) period. The quantity of spermidine in Atnoa1 was significantly higher than in Col-0, at both control and cold-hardening temperatures. A similar trend was observed for spermine, but only under control conditions. The mutant plants showed substantially higher salicylic acid (SA) contents for both the free and bound forms. This difference was significant not only in the control, but also in the cold-hardened plants. These results suggest that there is a compensation mechanism in Atnoa1 mutant Arabidopsis plants to reduce the negative effects of the mutation. These adaptation processes include the stimulation of photoprotection and alterations in the SA and polyamine compositions.  相似文献   
9.
Arbuscular mycorrhizal fungi enhance CO2 assimilation of their hosts which ensure the demand for carbohydrates of these obligate biotrophic microorganisms. Photosynthetic parameters were measured in tomato colonised or not by the arbuscular mycorrhizal fungus Glomus mosseae. In addition, carbohydrate contents and mRNA accumulation of three sucrose transporter genes were analysed. Mycorrhizal plants showed increased opening of stomata and assimilated significant more CO2. A higher proportion of the absorbed light was used for photochemical processes, while non-photochemical quenching and the content of photoprotective pigments were lower. Analysis of sugar contents showed no significant differences in leaves but enhanced levels of sucrose and fructose in roots, while glucose amounts stayed constant. The three sucrose transporter encoding genes of tomato SlSUT1, SlSUT2 and SlSUT4 were up-regulated providing transport capacities to transfer sucrose into the roots. It is proposed that a significant proportion of sugars is used by the mycorrhizal fungus, because only amounts of fructose were increased, while levels of glucose, which is mainly transferred towards the fungus, were nearly constant.  相似文献   
10.
Maize and grain sorghum seeds were sown in pots and grown for 39 days in sunlit controlled-environment chambers at 360 (ambient) and 720 (double-ambient, elevated) μmol mol−1 carbon dioxide concentrations [CO2]. Canopy net photosynthesis (PS) and evapotranspiration (TR) was measured throughout and summarized daily from 08:00 to 17:00 h Eastern Standard Time. Irrigation was withheld from matched pairs of treatments starting on 26 days after sowing (DAS). By 35 DAS, cumulative PS of drought-stress maize, compared to well-watered plants, was 41% lower under ambient [CO2] but only 13% lower under elevated [CO2]. In contrast, by 35 DAS, cumulative PS of drought-stress grain sorghum, compared to well-watered plants, was only 9% lower under ambient [CO2] and 7% lower under elevated [CO2]. During the 27-35 DAS drought period, water use efficiency (WUE, mol CO2 Kmol−1 H2O), was 3.99, 3.88, 5.50, and 8.65 for maize and 3.75, 4.43, 5.26, and 9.94 for grain sorghum, for ambient-[CO2] well-watered, ambient-[CO2] stressed, elevated-[CO2] well-watered and elevated-[CO2] stressed plants, respectively. Young plants of maize and sorghum used water more efficiently at elevated [CO2] than at ambient [CO2], especially under drought. Reductions in biomass by drought for young maize and grain sorghum plants were 42 and 36% at ambient [CO2], compared to 18 and 14% at elevated [CO2], respectively. Results of our water stress experiment demonstrated that maintenance of relatively high canopy photosynthetic rates in the face of decreased transpiration rates enhanced WUE in plants grown at elevated [CO2]. This confirms experimental evidence and conceptual models that suggest that an increase of intercellular [CO2] (or a sustained intercellular [CO2]) in the face of decreased stomatal conductance results in relative increases of growth of C4 plants. In short, drought stress in C4 crop plants can be ameliorated at elevated [CO2] as a result of lower stomatal conductance and sustaining intercellular [CO2]. Furthermore, less water might be required for C4 crops in future higher CO2 atmospheres, assuming weather and climate similar to present conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号