首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2014年   1篇
  2011年   1篇
  2007年   2篇
  2006年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Callanan MJ  Russell WM  Klaenhammer TR 《Gene》2007,389(2):122-127
The Lactobacillus gasseri ADH beta-glucuronidase gene, gusA, was cloned previously and found to exhibit excellent activity in acidic pH ranges, with maximal activity at pH 5.0. In contrast, activity was limited in neutral pH ranges of 6-7. In an effort to improve the activity of the reporter enzyme in neutral pH ranges, the gusA gene was cloned into the broad host range vector, pGK12, and subjected to random mutagenesis by passage through Epicurian coli mutator strain XL1-Red. Two mutant alleles, gusA2 and gusA3, were recovered that produced beta-glucuronidase with increased activity in neutral pH ranges. One of these, gusA3, was significantly more active in the pH range of 4-8 in both Escherichia coli and L. gasseri. Sequence analysis of gusA2 and gusA3 revealed single base pair changes that resulted in D524G and D573A substitutions, respectively. The modified GusA3 enzyme has expanded potential for use as a reporter enzyme in expression hosts that are not acidophilic, as well as lactic acid bacteria and other microorganisms that grow in acidifying environments.  相似文献   
2.
Growth of Escherichia coli on melibiose requires the induced synthesis of α-galactoside permease and α-galactosidase. Hydrolysis of the chromogenic substrate p-nitrophenyl-σ-galactoside by whole bacteria is dependent on intact oxidative metabolism. The α-galactosidase from E. coli was isolated for the first time as a soluble enzyme. In cell-free extracts p-nitrophenyl-α-galactoside hydrolisis was observed only at high protein concentrations and the activity decreased exponentially with the square of the dilution. The reason for this behaviour was shown to be that, unlike other known α-galactosidases, the enzyme of E. coli requires NAD. For optimal activity the enzyme also requires Mn2+, a high concentration of 2-mercaptoethanol, and a pH of 8.1. The approximate molecular weight of the active from of α-galactosidase as determined by sedimentation in a sucrose gradient is 200 000. Due to the instability of the enzyme, its purification has not been achieved.  相似文献   
3.
4.
Bacteria species involved in degradation of cellulosic substrates produce a variety of enzymes for processing related compounds along the hydrolytic pathway. Paenibacillus polymyxa encodes two homologous beta-glucosidases, BglA and BglB, presenting different quaternary structures and substrate specificities. We previously reported the 3D-structure of BglA, which is highly specific against cellobiose. Here, we present structural analysis of BglB, a monomeric enzyme that acts as an exo-beta-glucosidase hydrolyzing cellobiose and cellodextrins of higher degree of polymerization. The crystal structure of BglB shows that several polar residues narrow the active site pocket and contour additional subsites. The structure of the BglB-cellotetraose complex confirms these subsites, revealing the substrate-binding mode, and shows the oligosaccharide-enzyme recognition pattern in detail. Comparison between BglA and BglB crystal structures suggests that oligomerization in BglA can assist in fine-tuning the specificity of the active centre by modulating the loops surrounding the cavity. We have solved the crystal structure of BglB with bound thiocellobiose, a competitive inhibitor, which together with the BglB-cellotetraose complex delineate the general features of the aglycon site. The detailed characterization of the atomic interactions at the aglycon site show a recognition pattern common to all bacterial beta-glucosidases, and presents some differences with the aglycon site in plant beta-glycosidases essentially by means of a different orientation of the basal Trp. The crystal structures of of BglB with a covalently bound inhibitor (derived from 2-fluoroglucoside) and glucose (produced by hydrolysis of the substrate in the crystal), provide additional pictures of the binding events and the intermediates formed during the reaction. Altogether, this information can assist in the understanding of subtle differences of the enzyme mechanism and substrate recognition within this family of enzymes, and consequently it can help in the development of new enzymes with improved activity or specificity.  相似文献   
5.
Soh CP  Ali ZM  Lazan H 《Phytochemistry》2006,67(3):242-254
alpha-Galactosidase (EC 3.2.1.22) from ripe papaya (Carica papaya L.) fruit was fractionated by a combination of ion exchange and gel filtration chromatography into three forms, viz., alpha-galactosidase 1, 2 and 3. The predominant isoform, alpha-gal 2, was probably a tetramer with a native molecular mass of about 170 kDa and 52 kDa-sized subunits and an estimated pI of 7.3. The subunit's N-terminal amino acid sequence shared high identity (97%) with the deduced sequence of a papaya cDNA clone encoding a putative alpha-galactosidase PAG2 as well as with an Ajuga reptans L. GGT1 clone encoding a galactan: galactan galactosyltransferase (66%). During ripening, alpha-galactosidase activity increased concomitantly with firmness loss and this increase was largely ascribed to alpha-gal 2. The protein level of alpha-gal 2 as estimated by immunoblot was low in developing fruits and generally increased with ripening. alpha-Galactosidase 2 also had the ability to markedly catalyse increased pectin solubility and depolymerisation while the polymers were still structurally attached to the cell walls mimicking, in part, the changes that occur during ripening. The close correlation between texture changes, alpha-gal 2 activity and protein levels as well as capability to modify intact cell walls suggest that the enzyme might contribute to papaya fruit softening during ripening. The purported mechanism of alpha-gal 2 action as a softening enzyme was discussed in terms of its functional capacity as a glycanase or perhaps, as a transglycosylase.  相似文献   
6.
The role of calcium ion in the active site of the inverting glycoside hydrolase family 97 enzyme, BtGH97a, was investigated through structural and kinetic studies. The calcium ion was likely directly involved in the catalytic reaction. The pH dependence of kcat/Km values in the presence or absence of calcium ion indicated that the calcium ion lowered the pKa of the base catalyst. The significant decreases in kcat/Km for hydrolysis of substrates with basic leaving groups in the absence of calcium ion confirmed that the calcium ion facilitated the leaving group departure.  相似文献   
7.
Here we present an optimized procedure to generate amino acid variations at specific site(s) of proteins, followed by a simple one-step screen for mutants with the desired β-glucosidase activity.The procedure was evaluated by introducing sequence variation into a codon specifying a non-functional variant of the catalytic nucleophile (E401) of the maize β-glucosidase Zm-p60.1. Observed and theoretically expected frequencies of the four possible variants of the codon and the two possible phenotypes (functional and non-functional) were investigated. Deviations in codon and phenotype frequencies were expressed as a coefficient. This coefficient was then used to estimate the extent of oversampling, of the mutant library, which would be necessary to compensate for the underrepresentation of some sequences. This evaluation of the overall performance of the method allows experimentally derived parameters to be incorporated into mutant library design. This method combines the application of a well-defined distribution of variability with a reliable screening process. Thus, it facilitates the production of novel functional variants of β-glucosidases for either fundamental studies or potential biotechnological applications.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号