首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  2014年   1篇
  2013年   1篇
  2010年   1篇
  2006年   3篇
  2005年   1篇
  2003年   2篇
  2002年   1篇
  1998年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1985年   1篇
  1983年   1篇
  1979年   1篇
排序方式: 共有17条查询结果,搜索用时 328 毫秒
1.
mRNAs extracted from human pheochromocytoma were translated in vitro in a lysate of a rabbit reticulocytes. Two enzymes of the biosynthetic pathway of the catecholamines, tyrosine-hydroxylase (TH) and dopamine-beta-hydroxylase (DBH), were characterized as translation products after immunoprecipitation by specific antisera and electrophoretic analysis. The precursor of TH is a polypeptide having a molecular mass of 62,000 identical to that found for the mature protein. The molecular mass of the precursor of DBH 73,000 while that of the mature form is 79,000. TH and DBH have been translated from mRNAs having sedimentation coefficients of 22S and 25S, respectively.  相似文献   
2.
Purpose: Pituitary adenylate cyclase-activating polypeptide (PACAP), a member of the secretin/glucagons/vasoactive intestinal peptide family, induces the expression of catecholamine-synthesizing enzymes in adrenal medullary cells. In addition, PACAP and its receptor have been detected in human pheochromocytoma tissues, though it is not yet known whether PACAP enhances the expression of genes encoding catecholamine-synthesizing enzymes. To address this question, we analyzed PACAP, PACAP receptor, and tyrosine hydroxylase (TH) and phenylethanolamine-N-methyltransferase (PNMT) mRNAs in pheochromocytomas. Methods: The levels of the mRNA for PACAP and vasoactive intestinal peptide (VIP), and their receptors, and for TH and PNMT were measured by RT-PCR or real-time PCR analysis, and the concentrations of catecholamines were measured by HPLC in 24 intra-adrenal and six extra-adrenal pheochromocytomas. Results: mRNA expression of PACAP and its receptor VPAC1R were detected in many pheochromocytomas (24/30 and 29/30, respectively), but mRNA expression of the PAC1R and VPAC2R receptor subtypes were detected in only one of six extra-adrenal pheochromocytomas. PACAP mRNA expression correlated with TH (p=0.0018) and PNMT (p=0.05) mRNA expression, as well as epinephrine (p=0.0342) levels in 16 intra-adrenal pheochromocytomas. Conclusion: Our findings support a possible role for PACAP in the regulation of expression of genes encoding catecholamine-synthesizing enzymes in intra-adrenal pheochromocytomas.  相似文献   
3.
1. The aim of these studies was to test the hypothesis that glutamate is the principal excitatory neurotransmitter in the sympathetic premotor pathway from the rostral ventrolateral medulla (RVLM) to the sympathetic preganglionic neurons (SPNs) in the thoracic spinal cord.2. Iontophoretic and pressure ejection of glutamate receptor agonists and antagonists was made onto antidromically identified splanchnic and adrenal SPNs before and during electrical stimulation of the RVLM in urethane/chloralose-anesthetized, artificially ventilated rats.3. SPNs were excited by both NMDA and non-NMDA glutamate receptor agonists. Blockade of glutamate receptors in the IML interrupted the ability of electrical activation of sympathetic premotor neurons in the RVLM to excite SPNs. Within the IML, antergradely labeled terminals of RVLM neurons were found to contain glutamate immunoreactivity and to make asymmetric synapses on local dendrites.4. These data support a significant role for glutamate neurotransmission in mediating the tonic and phasic excitation of SPNs by the sympathetic premotor pathway from the RVLM. It seems likely that stimulation of the RVLM produces glutamate release from both C1 and non-PNMT-containing axon terminals in the IML.  相似文献   
4.
5.
6.
The purpose of this study was to investigate whether risk of gastric cancer (GC) was associated with single nucleotide polymorphisms (SNPs) in a gene cluster on the chromosome 17q12-q21 (ERBB2 amplicon) in the Chinese Han population. We detected twenty-six SNPs in this gene cluster containing steroidogenic acute regulatory-related lipid transfer domain containing 3 (STARD3), protein phosphatase 1 regulatory subunit 1B (PPP1R1B/DARPP32), titin-cap (TCAP), per1-like domain containing 1(PERLD1/CAB2), human epidermal growth factor receptor-2 (ERBB2/HER2), zinc-finger protein subfamily 1A 3 (ZNFN1A3/IKZF3) and DNA topoisomerase 2-alpha (TOP2A) genes in 311 patients with GC and in 425 controls by Sequenom. We found no associations between genetic variations and GC risk. However, haplotype analysis implied that the haplotype CCCT of STARD3 (rs9972882, rs881844, rs11869286 and rs1877031) conferred a protective effect on the susceptibility to GC (P = 0.043, odds ratio [OR] = 0.805, 95% confidence intervals [95% CI] = 0.643–0.992). The STARD3 rs1877031 TC genotype endued histogenesis of gastric mucinous adenocarcinoma and signet-ring cell carcinoma (P = 0.021, OR = 2.882, 95% CI = 1.173–7.084). We examined the expression of STARD3 in 243 tumor tissues out of the 311 GC patients and 20 adjacent normal gastric tissues using immumohistochemical (IHC) analysis and tissue microarrays (TMA). The expression of STARD3 was observed in the gastric parietal cells and in gastric tumor tissues and significantly correlated with gender (P = 0.004), alcohol drinking (P < 0.001), tumor location (P = 0.007), histological type (P = 0.005) and differentiation (P = 0.023) in GC. We concluded that the combined effect of haplotype CCCT of STARD3 might affect GC susceptibility. STARD3 expression might be related to the tumorigenesis of GC in the Chinese population.  相似文献   
7.
We cloned and sequenced the mouse phenylethanolamineN-methyltransferase (PNMT) gene which encodes the enzyme that catalyses the conversion of norepinephrine to epinephrine. The ability of various length sequences flanking the mouse or human PNMT genes to direct expression of reporter genes in transgenic mice was examined. We show that 9 kb of 5 flanking sequences from the cloned mouse PNMT gene can direct expression of theEscherichia coli -galactosidase (lacZ) gene to predicted regions of the adrenal, eye can direct in the adult transgenic mouse. The transgene was also expressed during development, in the myelencephalon, adrenal medulla and dorsal root ganglia. PNMT-producing cells were ablated by expression of the diphtheria toxin (DT-A) gene driven by the human PNMT promoter, resulting in abnormalities in the adrenal medulla, eye and testis. The hPNMT8 kb-DT-A line presents a model with which to examine the developmental ramifications of deletion of PNMT-producing cell populations from the adrenal medulla and retina.  相似文献   
8.
9.
Adrenal medullary chromaffin cells are derivatives of the neural crest and are widely believed to share a common sympathoadrenal (SA) progenitor with sympathetic neurons. For decades, the adrenal cortical environment was assumed to be essential for channelling SA progenitors towards an endocrine chromaffin cell fate. Our recent analysis of steroidogenic factor 1(Sf1) −/− mice, which lack an adrenal cortex, has challenged this view: in Sf1 −/− mice chromaffin cells migrate to the correct “adrenal” location and undergo largely normal differentiation. In contrast to Sf1 homozygous mutants, heterozygous animals have an adrenal cortex, which, however, is smaller than in wildtype littermates. We show here that the Sf1 +/− adrenal cortical anlagen attract normal numbers of chromaffin progenitor cells into their vicinity by embryonic day 13.5 (E13.5). Two days later, however, only a few scattered cells with highly immature features have immigrated into the adrenal cortex, whereas the remainder form a coherent cell assembly ectopically located at the medial surface of the gland. These cells appear more mature than the scattered intracortical chromaffin progenitors and express the adrenaline synthesizing enzyme PNMT with a delay of 1 day in comparison with wildtype littermates. Nevertheless, chromaffin progenitor cells undergo a numerical reduction of approximately 30% by E17.5. Together, our data suggest that normal adrenocortical development is critical for the correct immigration of chromaffin progenitors into the cortical anlagen, for the timing of PNMT expression and for the regulation of chromaffin cell numbers.This work was supported by a grant from the Deutsche Forschungsgemeinschaft (SFB 488, TP A6).  相似文献   
10.
Mammalian brain has a β-carboline 2N-methyltransferase activity that converts β-carbolines, such as norharman and harman, into 2N-methylated β-carbolinium cations, which are structural and functional analogs of the Parkinsonian-inducing toxin 1-methyl-4-phenylpyridinium cation (MPP+). The identity and physiological function of this β-carboline 2N-methylation activity was previously unknown. We report pharmacological and biochemical evidence that phenylethanolamine N-methyltransferase (EC 2.1.1.28) has β-carboline 2N-methyltransferase activity. Specifically, purified phenylethanolamine N-methyltransferase (PNMT) catalyzes the 2N-methylation (21.1 pmol/h per unit PNMT) of 9-methylnorharman, but not the 9N-methylation of 2-methylnorharmanium cation. LY134046, a selective inhibitor of phenylethanolamine N-methyltransferase, inhibits (IC50 1.9 μM) the 2N-methylation of 9-methylnorharman, a substrate for β-carboline 2N-methyltransferase. Substrates of phenylethanolamine N-methyltransferase also inhibit β-carboline 2N-methyltransferase activity in a concentration-dependent manner. β-Carboline 2N-methyltransferase activity (43.7 pmol/h/mg protein) is present in human adrenal medulla, a tissue with high phenylethanolamine N-methyltransferase activity.

We are investigating the potential role of N-methylated β-carbolinium cations in the pathogenesis of idiopathic Parkinson’s disease. Presuming that phenylethanolamine N-methyltransferase activity forms toxic 2N-methylated β-carbolinium cations, we propose a novel hypothesis regarding Parkinson’s disease—a hypothesis that includes a role for phenylethanolamine N-methyltransferase-catalyzed formation of MPP+-like 2N-methylated β-carbolinium cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号