首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  10篇
  2020年   1篇
  2012年   1篇
  2010年   2篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2003年   1篇
  1998年   1篇
  1984年   1篇
排序方式: 共有10条查询结果,搜索用时 8 毫秒
1
1.
2.
Phosphatidylinositol 5-phosphate (PtdIns5P) is emerging as a potential lipid messenger involved in several cell types, from plants to mammals. Expression of IpgD, a PtdIns(4, 5)P2 4-phosphatase induces Src kinase and Akt, but not ERK activation and enhances interleukin II promoter activity in T-cells. Expression of a new PtdIns5P interacting domain blocks IpgD-induced T-cell activation and selective signaling molecules downstream of TCR triggering. Altogether, these data suggest that PtdIns5P may play a sensor function in setting the threshold of T-cell activation and contributing to maintain T-cell homeostasis.  相似文献   
3.
Cysteine proteinases predominate in the midgut fluid (MF) and oral secretion (OS) of adult western corn rootworm (WCR) based on their mild acidic pH optima (pH 6.0), enhanced activities after treatment with thiol reducing agents, and inhibition by selective cysteine proteinase inhibitors (PIs). Four cysteine PIs including E-64, calpeptin, calpain inhibitor II, and leupeptin (also a serine PI) strongly inhibited azocaseinolytic activity in a dose-dependent manner in both the MF and OS. The most significant effect on adult female WCR of cysteine PI consumption with corn pollen was the reduction in fecundity, but female survival was not apparently affected. Mean fresh weights for all PI-fed females were also lower than control groups. All PI-fed groups [E-64, calpain inhibitor I (Cal I) and leupeptin] had a significantly lower daily egg production than respective corn pollen-fed controls. E-64 was more potent than leupeptin and Cal I on inhibiting fecundity, which correlates with their relative anti-proteinase potency in vitro. E-64, Cal I, and leupeptin at 1.5-2 nmol/beetle/day reduced fecundity down to 25-45% of control values. Reduced egg production by PI-fed beetles results from a combination of the direct inhibition of protein digestion and a post-ingestive negative feedback mechanism, which reduces food intake. The supplement of ten essential amino acids into the E-64-treated pollen enhanced up to 3.7-fold the number of eggs laid compared to the E-64-fed group without these amino acids, suggesting that egg production is dependent on the supply of essential amino acids from corn pollen proteolysis.  相似文献   
4.
5.
The introduction of human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) markedly improved the clinical outcome and control of HIV-1 infection. However, cross-resistance among PIs due to a wide spectrum of mutations in viral protease is a major factor limiting their broader clinical use. Here we report on the suppression of PI resistance using a covalent attachment of a phosphonic acid motif to a peptidomimetic inhibitor scaffold. The resulting phosphonate analogs maintain high binding affinity to HIV-1 protease, potent antiretroviral activity, and unlike the parent molecules, display no loss of potency against a panel of clinically important PI-resistant HIV-1 strains. As shown by crystallographic analysis, the phosphonate moiety is highly exposed to solvent with no discernable interactions with any of the enzyme active site or surface residues. We term this effect "solvent anchoring" and demonstrate that it is driven by a favorable change in the inhibitor binding entropy upon the interaction with mutant enzymes. This type of thermodynamic behavior, which was not found with the parent scaffold fully buried in the enzyme active site, is a result of the increased degeneracy of inhibitor binding states, allowing effective molecular adaptation to the expanded cavity volume of mutant proteases. This strategy, which is applicable to various PI scaffolds, should facilitate the design of novel PIs and potentially other antiviral therapeutics.  相似文献   
6.
The Ubiquitin-Proteasome System (UPS) and the Autophagy-Lysosome Pathways (ALP) are key mechanisms for cellular homeostasis sustenance and protein clearance. A wide number of Neurodegenerative Diseases (NDs) are tied with UPS impairment and have been also described as proteinopathies caused by aggregate-prone proteins, not efficiently removed by proteasome. Despite the large knowledge on proteasome biological role, molecular mechanisms associated with its impairment are still blur. We have pursued a comprehensive proteomic investigation to evaluate the phenotypic rearrangements in protein repertoires associated with a UPS blockage. Different functional proteomic approaches have been employed to tackle UPS impairment impact on human NeuroBlastoma (NB) cell lines responsive to proteasome inhibition by Epoxomicin. 2-Dimensional Electrophoresis (2-DE) separation combined with Mass Spectrometry and Shotgun Proteomics experiments have been employed to design a thorough picture of protein profile. Unsupervised meta-analysis of the collected proteomic data revealed that all the identified proteins relate each other in a functional network centered on beta-estradiol. Moreover we showed that treatment of cells with beta-estradiol resulted in aggregate removal and increased cell survival due to activation of the autophagic pathway. Our data may provide the molecular basis for the use of beta-estradiol in neurodegenerative disorders by induction of protein aggregate removal.  相似文献   
7.
Abstract

Although several plant protease inhibitors have been structurally characterized using X-ray crystallography, very few have been studied using NMR techniques. Here, we report an NMR study of the solution structure and dynamics of an inhibitory repeat domain (IRD) variant 12 from the wound-inducible Pin-II type proteinase inhibitor from Capsicum annuum. IRD variant 12 (IRD12) showed strong anti-metabolic activity against the Lepidopteran insect pest, Helicoverpa armigera. The NMR-derived three-dimensional structure of IRD12 reveals a three-stranded anti-parallel β-sheet rigidly held together by four disulfide bridges and shows structural homology with known IRDs. It is interesting to note that the IRD12 structure containing ~75% unstructured part still shows substantial amount of rigidity of N–H bond vectors with respect to its molecular motion.

Communicated by Ramaswamy H. Sarma  相似文献   
8.
Cytochrome P450 3A4 (CYP3A4) is the most abundant CYP enzyme in the liver and metabolizes approximately 50% of the drugs, including antiretrovirals. Although CYP3A4 induction by ethanol and impact of CYP3A4 on drug metabolism and toxicity is known, CYP3A4-ethanol physical interaction and its impact on drug binding, inhibition, or metabolism is not known. Therefore, we studied the effect of ethanol on binding and inhibition of CYP3A4 with a representative protease inhibitor, nelfinavir, followed by the effect of alcohol on nelfinavir metabolism. Our initial results showed that methanol, ethanol, isopropanol, isobutanol, and isoamyl alcohol bind in the active site of CYP3A4 and exhibit type I spectra. Among these alcohol compounds, ethanol showed the lowest KD (5.9 ± 0.34 mM), suggesting its strong binding affinity with CYP3A4. Ethanol (20 mM) decreased the KD of nelfinavir by >5-fold (0.041 ± 0.007 vs. 0.227 ± 0.038 μM). Similarly, 20 mM ethanol decreased the IC50 of nelfinavir by >3-fold (2.6 ± 0.5 vs. 8.3 ± 3.1 μM). These results suggest that ethanol facilitates binding of nelfinavir with CYP3A4. Furthermore, we performed nelfinavir metabolism using LCMS. Although ethanol did not alter kcat, it decreased the Km of nelfinavir, suggesting a decrease in catalytic efficiency (kcat/Km). This is an important finding because alcoholism is prevalent in HIV-1-infected persons and alcohol is shown to decrease the response to antiretroviral therapy.  相似文献   
9.
alpha Latrotoxin of black widow spider is known to bind with high affinity to surface sites of rat pheochromocytoma (PC12) cells, thereby causing depolarization, calcium influx and massive neurotransmitter release. We show here that the toxin causes the accumulation of inositol phosphates, the products of phosphoinositide breakdown. Inositol 1,4,5, trisphosphate was predominantly accumulated shortly after toxin application. Phosphoinositide breakdown appears to be a direct consequence of toxin binding because high K+ and ionophores (which induce depolarization, calcium influx and transmitter release by different mechanisms) were without such effect. Phosphoinositide breakdown is known as an event coupled to the activation of receptors of various hormones and transmitters. We suggest therefore that the alpha latrotoxin binding site is a receptor coupled across the membrane to the phosphoinositide hydrolysing system.  相似文献   
10.
Moran N 《FEBS letters》2007,581(12):2337-2347
"Osmotic Motors"--the best-documented explanation for plant leaf movements--frequently reside in specialized motor leaf organs, pulvini. The movements result from dissimilar volume and turgor changes in two oppositely positioned parts of the pulvinus. This Osmotic Motor is powered by a plasma membrane proton ATPase, which drives KCl fluxes and, consequently, water, across the pulvinus into swelling cells and out of shrinking cells. Light signals and signals from the endogenous biological clock converge on the channels through which these fluxes occur. These channels and their regulatory pathways in the pulvinus are the topic of this review.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号