首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2018年   2篇
  2015年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2006年   1篇
排序方式: 共有7条查询结果,搜索用时 46 毫秒
1
1.
A proteomics approach was used to search for novel phospholipid binding proteins in Saccharomyces cerevisiae. Phospholipids were immobilized on a solid support and the lipids were probed with soluble yeast protein extracts. From this, the phosphatidic acid binding proteins were eluted and identified by mass spectrometry. Thirteen proteins were identified and 11 of these were previously unknown lipid binding proteins. The protein-lipid interactions identified would not have been predicted using bioinformatics approaches as none possessed a known lipid binding motif. A subset of the identified proteins was purified to homogeneity and determined to directly bind phospholipids immobilized on a solid support or organized into liposomes. This simple approach could be systematically applied to perform an exhaustive screen for soluble lipid binding proteins in S. cerevisiae or other organisms.  相似文献   
2.
The Gasdermin (GSDM) family consists of Gasdermin A (GSDMA), Gasdermin B (GSDMB), Gasdermin C (GSDMC), Gasdermin D (GSDMD), Gasdermin E (GSDME) and Pejvakin (PJVK). GSDMD is activated by inflammasome-associated inflammatory caspases. Cleavage of GSDMD by human or mouse caspase-1, human caspase-4, human caspase-5, and mouse caspase-11 liberates the N-terminal effector domain from the C-terminal inhibitory domain. The N-terminal domain oligomerizes in the cell membrane and forms a pore of 10–16?nm in diameter, through which substrates of a smaller diameter, such as interleukin-1β and interleukin-18, are secreted. The increasing abundance of membrane pores ultimately leads to membrane rupture and pyroptosis, releasing the entire cellular content. Other than GSDMD, the N-terminal domain of all GSDMs, with the exception of PJVK, have the ability to form pores. There is evidence to suggest that GSDMB and GSDME are cleaved by apoptotic caspases. Here, we review the mechanistic functions of GSDM proteins with respect to their expression and signaling profile in the cell, with more focused discussions on inflammasome activation and cell death.  相似文献   
3.
Pleckstrin homology (PH) domains mediate protein–membrane interactions by binding to phosphatidylinositol phosphate (PIP) molecules. The structural and energetic basis of selective PH–PIP interactions is central to understanding many cellular processes, yet the molecular complexities of the PH–PIP interactions are largely unknown. Molecular dynamics simulations using a coarse-grained model enables estimation of free-energy landscapes for the interactions of 12 different PH domains with membranes containing PIP2 or PIP3, allowing us to obtain a detailed molecular energetic understanding of the complexities of the interactions of the PH domains with PIP molecules in membranes. Distinct binding modes, corresponding to different distributions of cationic residues on the PH domain, were observed, involving PIP interactions at either the “canonical” (C) and/or “alternate” (A) sites. PH domains can be grouped by the relative strength of their C- and A-site interactions, revealing that a higher affinity correlates with increased C-site interactions. These simulations demonstrate that simultaneous binding of multiple PIP molecules by PH domains contributes to high-affinity membrane interactions, informing our understanding of membrane recognition by PH domains in vivo.  相似文献   
4.
5.
Natural rubber is synthesized in laticifers in the inner liber of the rubber tree (Hevea brasiliensis). Upon bark tapping, the latex is expelled due to liber turgor pressure. The mature laticifers are devoid of plasmodesmata; therefore a corresponding decrease in the total latex solid content is likely to occur due to water influx inside the laticifers. Auxins and ethylene used as efficient yield stimulants in mature untapped rubber trees, but, bark treatments with abscisic acid (ABA) and salicylic acid (SA) could also induce a transient increase latex yield. We recently reported that there are three aquaporin genes, HbPIP2;1, HbTIP1;1 and HbPIP1;1, that are regulated differentially after ethylene bark treatment. HbPIP2;1 was up-regulated in both the laticifers and the inner liber tissues, whereas HbTIP1;1 was up-regulated in the latex cells, but very markedly down-regulated in the inner liber tissues. Conversely, HbPIP1;1 was down-regulated in both tissues. In the present study, HbPIP2;1 and HbTIP1;1 showed a similar expression in response to auxin, ABA and SA, as seen in ethylene stimulation, while HbPIP1;1 was slightly regulated by auxin, but neither by ABA nor SA. The analysis of the HbPIP1;1 promoter region indicated the presence of only ethylene and auxin responsive elements. In addition, the poor efficiency of this HbPIP1;1 in increasing plasmalemma water conductance was confirmed in Xenopus oocytes. Thus, an increase in latex yield in response to all of these hormones was proposed to be the major function of aquaporins, HbPIP2;1 and HbTIP1;1. This study emphasized that the circulation of water between the laticifers and their surrounding tissues that result in latex dilution, as well as the probable maintenance of the liber tissues turgor pressure, favor the prolongation of latex flow.  相似文献   
6.
Boron (B) enters cells as the uncharged boric acid, a small neutral molecule with sufficient lipid solubility to cross cell membranes without the aid of transport proteins. The extent to which the observed uptake rates for B in plants can be explained by this simple physical process was examined by applying treatments expected to inhibit the membrane transporters most likely to be involved in B transport. These experiments established that at least 50% of B uptake could be facilitated by transporters. The B transport characteristics of two barley aquaglyceroporins, HvPIP1;3 and HvPIP1;4, were investigated using yeast complementation assays. Expression of both genes in yeast resulted in increased B sensitivity. Transport assays in yeast confirmed that HvPIP1;3 and HvPIP1;4 are both capable of transporting B. The physiological role of these HvPIP1 genes in B transport is uncertain since their expression was not responsive to B nutritional status, and they continued to be expressed under toxicity conditions.  相似文献   
7.
Soto G  Alleva K  Amodeo G  Muschietti J  Ayub ND 《Gene》2012,503(1):165-176
Aquaporins (AQPs) represent a family of channel proteins that transport water and/or small solutes across cell membranes in the three domains of life. In all previous phylogenetic analysis of aquaporin, trees constructed using proteins with very low amino acid identity (<15%) were incongruent with rRNA data. In this work, restricting the evolutionary study of aquaporins to proteins with high amino acid identity (>25%), we showed congruence between AQPs and organismal trees. On the basis of this analysis, we defined 19 orthologous gene clusters in flowering plant species (3 PIP-like, 7 TIP-like, 6 NIP-like and 3 SIP-like). We described specific conserved motifs for each subfamily and each cluster, which were used to develop a method for automatic classification. Analysis of amino acid identity between orthologous monocotyledon and dicotyledon AQPs from each cluster, suggested that PIPs are under high evolutionary constraint. The phylogenetic analysis allowed us the assignment of orthologous aquaporins for very distant animal lineages (tetrapods-fishes). We also demonstrated that the location of all vertebrate AQPs in the ortholog clusters could be predicted by comparing their amino acid identity with human AQPs. We defined four AQP subfamilies in animals: AQP1-like, AQP8-like, AQP3-like and AQP11-like. Phylogenetic analysis showed that the four animal AQPs subfamilies are related with PIP-like, TIP-like, NIP-like and SIP-like subfamilies, respectively. Thus, this analysis would allow the prediction of individual AQPs function on the basis of orthologous genes from Arabidopsis thaliana and Homo sapiens.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号