首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   960篇
  免费   12篇
  国内免费   17篇
  2023年   7篇
  2022年   10篇
  2021年   13篇
  2020年   10篇
  2019年   17篇
  2018年   18篇
  2017年   7篇
  2016年   6篇
  2015年   38篇
  2014年   126篇
  2013年   104篇
  2012年   120篇
  2011年   107篇
  2010年   83篇
  2009年   38篇
  2008年   39篇
  2007年   46篇
  2006年   40篇
  2005年   26篇
  2004年   12篇
  2003年   23篇
  2002年   9篇
  2001年   10篇
  2000年   11篇
  1999年   9篇
  1998年   2篇
  1997年   9篇
  1996年   4篇
  1995年   9篇
  1994年   3篇
  1993年   5篇
  1992年   3篇
  1991年   1篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1984年   2篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1976年   2篇
排序方式: 共有989条查询结果,搜索用时 15 毫秒
1.
The aim of the study was to explore the mechanism of mesenchymal stem cell‐derived exosomes (MSC‐EXO) to protect against experimentally induced pulmonary hypertension (PH). Monocrotaline (MCT)‐induced rat model of PH was successfully established by a single intraperitoneal injection of 50 mg/kg MCT, 3 weeks later the animals were treated with MSC‐EXO via tail vein injection. Post‐operation, our results showed that MSC‐EXO could significantly reduce right ventricular systolic pressure (RVSP) and the right ventricular hypertrophy index, attenuate pulmonary vascular remodelling and lung fibrosis in vivo. In vitro experiment, the hypoxia models of pulmonary artery endothelial cell (PAEC) and pulmonary vascular smooth muscle cell (PASMC) were used. We found that the expression levels of Wnt5a, Wnt11, BMPR2, BMP4 and BMP9 were increased, but β‐catenin, cyclin D1 and TGF‐β1 were decreased in MSC‐EXO group as compared with MCT or hypoxia group in vivo or vitro. However, these increased could be blocked when cells were transfected with Wnt5a siRNA in vitro. Taken together, these results suggested that the mechanism of MSC‐EXO to prevent PH vascular remodelling may be via regulation of Wnt5a/BMP signalling pathway.  相似文献   
2.
The EphA2 receptor tyrosine kinase plays a central role in the regulation of cell adhesion and guidance in many human tissues. The activation of EphA2 occurs after proper dimerization/oligomerization in the plasma membrane, which occurs with the participation of extracellular and cytoplasmic domains. Our study revealed that the isolated transmembrane domain (TMD) of EphA2 embedded into the lipid bicelle dimerized via the heptad repeat motif L535X3G539X2A542X3V546X2L549 rather than through the alternative glycine zipper motif A536X3G540X3G544 (typical for TMD dimerization in many proteins). To evaluate the significance of TMD interactions for full-length EphA2, we substituted key residues in the heptad repeat motif (HR variant: G539I, A542I, G553I) or in the glycine zipper motif (GZ variant: G540I, G544I) and expressed YFP-tagged EphA2 (WT, HR, and GZ variants) in HEK293T cells. Confocal microscopy revealed a similar distribution of all EphA2-YFP variants in cells. The expression of EphA2-YFP variants and their kinase activity (phosphorylation of Tyr588 and/or Tyr594) and ephrin-A3 binding were analyzed with flow cytometry on a single cell basis. Activation of any EphA2 variant is found to occur even without ephrin stimulation when the EphA2 content in cells is sufficiently high. Ephrin-A3 binding is not affected in mutant variants. Mutations in the TMD have a significant effect on EphA2 activity. Both ligand-dependent and ligand-independent activities are enhanced for the HR variant and reduced for the GZ variant compared with the WT. These findings allow us to suggest TMD dimerization switching between the heptad repeat and glycine zipper motifs, corresponding to inactive and active receptor states, respectively, as a mechanism underlying EphA2 signal transduction.  相似文献   
3.
In order to obtain a more precise definition of the conditions under which 2-methyl-4-dimethylaminoazobenzene (2-Me-DAB) and liver cell proliferation play a role in the initiation of hepatocarcinogenesis, the toxicity of 2-Me-DAB for normal and partially hepatectomized rats was investigated. Continuous feeding of a basal low protein, low riboflavin diet supplemented with 2-Me-DAB was found to be highly toxic for male albino rats. All animals fed on such a diet died before 200 days. Sham operation and partial hepatectomy (PH) at 30 days of 2-Me-DAB feeding reduced the median survival time from 122 days to 107 and 94 days, respectively. Transfer to the basal diet after 30 days of 2-Me-DAB feeding and PH prolonged the median survival time to 216 days while 97% of the rats returned to the normal complete diet after the same treatments survived for more than 300 days. 2-Me-DAB was not necrogenic and there was no evidence of reparative proliferation or hepatic tumor formation in any group. Feeding rats with the 2-Me-DAB containing diet for 1 month delayed and strongly inhibited the mitotic response of the liver to the stimulus of partial hepatectomy. This is the result of a blockage of the cells in G1 as revealed by the fact that only 1% of the hepatocytes became labeled when 2-Me-DAB fed animals were injected with tritiated thymidine prior to sacrifice at 24 h post-hepatectomy, as compared to 40% in rats fed the normal or the control basal diet. This inhibitory effect of 2-Me-DAB is reversible however since rats returned to the normal diet for 1 or 2 months after 2-Me-DAB feeding showed percentages of mitoses and labeling indices comparable to those of control animals following PH. The number of abnormal mitoses was high (13%) in regenerating livers of rats fed 2-Me-DAB and the lesions responsible for this effect are apparently not repaired since 2-Me-DAB fed rats partially hepatectomized after being transferred to the normal diet for 1 or 2 months showed the same number of mitotic irregularities. The present results suggest that assays with 2-Me-DAB as 'pure initiator' or agent of selective toxicity should be pursued in attempts to improve existing experimental models of hepatocarcinogenesis.  相似文献   
4.
We demonstrate homology between the catalytic domains of exoglucanase (1,4-beta-D-glucan cellobiohydrolase, EC 3.2.1.91) from Cellulomonas fimi and those of endoxylanases (1,4-beta-D-xylan xylanohydrolases, EC 3.2.1.8) from Bacillus sp. strain C-125 and the fungus Cryptococcus albidus; and between the catalytic domains of endoglucanase (1,4-(1,3:1,4)-beta-D-glucan 4-glucanohydrolase, EC 3.2.1.4) from Cellulomonas fimi and exoglucanase II from Trichoderma reesei. These five enzymes apparently evolved by reshuffling of two catalytic domains and several substrate-binding domains.  相似文献   
5.
6.
The pentafunctional AROM protein in Aspergillus nidulans and other fungi catalyses five consecutive enzymatic steps leading to the production of 5-enolpyruvylshikimate 3-phosphate (EPSP) in the shikimate pathway. The AROM protein has five separate enzymatic domains that have previously been shown to display a range of abilities to fold and function in isolation as monofunctional enzymes. In this communication, we report (1) the stable overproduction of a bifunctional protein containing the 3-dehydroquinate (DHQ) synthase and EPSP synthase activities in Escherichia coli to around 10% of the total cell protein; (2) that both the DHQ synthase and EPSP synthase activities in the over-produced fragment are enzymatically active as judged by their ability to complement aroA and aroB mutants of E. coli; (3) that the EPSP synthase domain is only enzymatically active when covalently attached to the DHQ synthase domain (the cis arrangement). When DHQ synthase and EPSP synthase are produced concomitantly by transcribing sequences encoding the individual domains from separate plasmids in the same bacterial cell (the trans arrangement) no overproduction or enzyme activity can be detected for the EPSP synthase domain; (4) the EPSP synthase domain can be stably overproduced as a fusion protein with glutathione S-transferase (GST), however the EPSP synthase in this instance is enzymatically inactive; (5) a protein containing an enzymatically inactive DHQ synthase domain in the cis arrangement with EPSP synthase domain is stably overproduced with enzymatically active EPSP synthase; (6) the two C-terminal domains of the AROM protein specifying the 3-dehydroquinase and shikimate dehydrogenase domains can be overproduced in A. nidulans using a specially constructed expression vector. This same bi-domain fragment however is not produced in E. coli when identical coding sequences are transcribed from a prokaryotic expression vector. These data support the view that multifunctional/multidomain proteins do not solely consist of independent units covalently linked together, but rather that certain individual domains interact to varying degrees to stabilise enzyme activity.  相似文献   
7.
Response regulators of bacterial sensory transduction systems generally consist of receiver module domains covalently linked to effector domains. The effector domains include DNA binding and/or catalytic units that are regulated by sensor kinase-catalyzed aspartyl phosphorylation within their receiver modules. Most receiver modules are associated with three distinct families of DNA binding domains, but some are associated with other types of DNA binding domains, with methylated chemotaxis protein (MCP) demethylases, or with sensor kinases. A few exist as independent entities which regulate their target systems by noncovalent interactions.In this study the molecular phylogenies of the receiver modules and effector domains of 49 fully sequenced response regulators and their homologues were determined. The three major, evolutionarily distinct, DNA binding domains found in response regulators were evaluated for their phylogenetic relatedness, and the phylogenetic trees obtained for these domains were compared with those for the receiver modules. Members of one family (family 1) of DNA binding domains are linked to large ATPase domains which usually function cooperatively in the activation of E. Coli 54-dependent promoters or their equivalents in other bacteria. Members of a second family (family 2) always function in conjunction with the E. Coli 70 or its equivalent in other bacteria. A third family of DNA binding domains (family 3) functions by an uncharacterized mechanism involving more than one a factor. These three domain families utilize distinct helix-turn-helix motifs for DNA binding.The phylogenetic tree of the receiver modules revealed three major and several minor clusters of these domains. The three major receiver module clusters (clusters 1, 2, and 3) generally function with the three major families of DNA binding domains (families 1, 2, and 3, respectively) to comprise three classes of response regulators (classes 1, 2, and 3), although several exceptions exist. The minor clusters of receiver modules were usually, but not always, associated with other types of effector domains. Finally, several receiver modules did not fit into a cluster. It was concluded that receiver modules usually diverged from common ancestral protein domains together with the corresponding effector domains, although domain shuffling, due to intragenic splicing and fusion, must have occurred during the evolution of some of these proteins.Multiple sequence alignments of the 49 receiver modules and their various types of effector domains, together with other homologous domains, allowed definition of regions of striking sequence similarity and degrees of conservation of specific residues. Sequence data were correlated with structure/function when such information was available. These studies should provide guides for extrapolation of results obtained with one response regulator to others as well as for the design of future structure/function analyses. Correspondence to: M.H. Saier, Jr.  相似文献   
8.
The available amino acid sequences of the α-amylase family (glycosyl hydrolase family 13) were searched to identify their domain B, a distinct domain that protrudes from the regular catalytic (β/α)8-barrel between the strand β3 and the helix α3. The isolated domain B sequences were inspected visually and also analyzed by Hydrophobic Cluster Analysis (HCA) to find common features. Sequence analyses and inspection of the few available three-dimensional structures suggest that the secondary structure of domain B varies with the enzyme specificity. Domain B in these different forms, however, may still have evolved from a common ancestor. The largest number of different specificities was found in the group with structural similarity to domain B from Bacillus cereus oligo-1,6-glucosidase that contains an α-helix succeeded by a three-stranded antiparallel β-sheet. These enzymes are α-glucosidase, cyclomaltodextrinase, dextran glucosidase, trehalose-6-phosphate hydrolase, neopullulanase, and a few α-amylases. Domain B of this type was observed also in some mammalian proteins involved in the transport of amino acids. These proteins show remarkable similarity with (β/α)8-barrel elements throughout the entire sequence of enzymes from the oligo-1,6-glucosidase group. The transport proteins, in turn, resemble the animal 4F2 heavy-chain cell surface antigens, for which the sequences either lack domain B or contain only parts thereof. The similarities are compiled to indicate a possible route of domain evolution in the α-amylase family. Received: 4 December 1996 / Accepted: 13 March 1997  相似文献   
9.
In order to characterize rat liver DNA replicated invivo on a carcinogen-damaged template, the replicated DNA was treated with S1-nuclease and the release of (14C)-dimethyl-nitrosamine induced 06-methylguanine, a lesion associated with miscoding and N-7-methylguanine, a lesion that does not miscode were monitored. The results indicated that both the methylated guanines became susceptible to S1-nuclease upon replication. However, a greater percentage of 06-methylguanine (22% of the total 06-methylguanine present in the DNA) compared to N-7-methylguanine (4% of the total N-7-methylguanine present in the DNA) was rendered acid soluble by S1-nuclease. The preferential release of 06-methylguanine compared to N-7-methylguanine from replicated DNA was interpreted to indicate its occurrence in local denatured regions probably generated as a result of misbase pairing.  相似文献   
10.
In a previous study, various intermediates in λ DNA packaging were visualized after lysis of λ-infected cells with osmotic shock and sedimentation through a sucrose formalin cushion onto electron microscope grids. Along this line, a systematic screening for intermediates accumulated in all head mutants available was performed. λA?-infected cells accumulate only empty spherical protein shells (petit λ) bound at an intermediate point along the DNA thread. In situ digestion experiments with restriction endonuclease EcoRI show that the petit λ-DNA complexes are formed at a fixed point on the DNA concatemer. In λNu1?-infected cells, however, most petit λ was not bound to DNA. In Fec? cells, which are defective in formation of concatemers but normal in head protein synthesis, most petit λ did not sediment onto the carbon film of the grid. In D? mutant, petit λ, partially full heads and empty heads with released DNA were observed. λFI?-infected cells also accumulate petit λ and partially full heads. The present studies suggest that protein pNu1 is required for complex formation between head precursors and DNA concatemers, pA for the initiation of DNA packaging, pD and pFI for the promotion of DNA packaging, and pD for stabilization of head structures. The results obtained with other head mutants involved in formation of mature proheads and head completion confirm earlier results obtained by different techniques.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号