首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
  25篇
  2019年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1998年   1篇
  1985年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
排序方式: 共有25条查询结果,搜索用时 10 毫秒
1.
果实表达PGIPs的基因克隆及功能研究进展   总被引:1,自引:0,他引:1  
多聚半乳糖醛酸酶(PGs)是病原真菌早期侵染植物的一个重要致病因子。多聚半乳糖醛酸酶抑制蛋白(PGIPs)作为植物防御蛋白,能特异性抑制真菌分泌的多聚半乳糖醛酸酶,并通过延长寡聚半乳糖醛酸(OGs)的稳定期激活植物防御反应。综述PGIPs在植物细胞中的定位,PGIPs与PGs之间的作用方式,PGIPs基因的分离与克隆,以及PGIPs对果实感病的影响,并对PGIPs的研究前景进行展望。  相似文献   
2.
Aurein 1.2 is an antimicrobial and anticancer peptide isolated from an Australian frog. To improve our understanding of the mechanism of action, two series of peptides were designed. The first series includes the N-terminal membrane anchor of bacterial glucose-specific enzyme IIA, aurein 1.2, and a newly identified aurein 1.2 analog from human LL-37 (LLAA). The order of antibacterial activity is LLAA > aurein 1.2 >> the membrane anchor (inactive). The structure of LLAA in detergent micelles was determined by 1H NMR spectroscopy, including structural refinement by natural abundance 13Cα, 13Cβ, and 15N chemical shifts. The hydrophobic surface area of the 3D structure is related to the retention time of the peptide on a reverse-phase HPLC column. The higher activity of LLAA compared to aurein 1.2 was attributed to additional cationic residues that enhance the membrane perturbation potential. The second peptide series was created by changing the C-terminal phenylalanine (F13) of aurein 1.2 to either phenylglycine or tryptophan. A closer or further location of the aromatic rings to the peptide backbone in the mutants relative to F13 is proposed to cause a drop in activity. Phenylglycine with unique chemical shifts may be a useful NMR probe for structure-activity relationship studies of antimicrobial peptides. To facilitate potential future use for NMR studies, random-coil chemical shifts for phenylglycine (X) were measured using the synthetic peptide GGXGG. Aromatic rings of phenylalanines in all the peptides penetrated 2-5 Å below the lipid head group and are essential for membrane targeting as illustrated by intermolecular peptide-lipid NOE patterns.  相似文献   
3.
4.
Originally regarded as just membrane constituents and energy storing molecules, lipids are now recognised as potent signalling molecules that regulate a multitude of cellular responses via receptor-mediated pathways, including cell growth and death, and inflammation/infection. Derived from polyunsaturated fatty acids (PUFAs), such as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), each lipid displays unique properties, thus making their role in inflammation distinct from that of other lipids derived from the same PUFA. The diversity of their actions arises because such metabolites are synthesised via discrete enzymatic pathways and because they elicit their response via different receptors. This review will collate the bioactive lipid research to date and summarise the findings in terms of the major pathways involved in their biosynthesis and their role in inflammation and its resolution. It will include lipids derived from AA (prostanoids, leukotrienes, 5-oxo-6,8,11,14-eicosatetraenoic acid, lipoxins and epoxyeicosatrienoic acids), EPA (E-series resolvins), and DHA (D-series resolvins, protectins and maresins).  相似文献   
5.
Worldwide bacterial resistance to traditional antibiotics has drawn much research attention to naturally occurring antimicrobial peptides (AMPs) owing to their potential as alternative antimicrobials. Structural studies of AMPs are essential for an in-depth understanding of their activity, mechanism of action, and in guiding peptide design. Two-dimensional solution proton NMR spectroscopy has been the major tool. In this article, we describe the applications of natural abundance 13C NMR spectroscopy that provides complementary information to 2D 1H NMR. The correlation of 13Cα secondary shifts with both 3D structure and heteronuclear 15N NOE values indicates that natural abundance carbon chemical shifts are useful probes for backbone structure and dynamics of membrane peptides. Using human LL-37-derived peptides (GF-17, KR-12, and RI-10), as well as amphibian antimicrobial and anticancer peptide aurein 1.2 and its analog LLAA, as models, we show that the cross peak intensity plots of 2D 1H-13Cα HSQC spectra versus residue number present a wave-like pattern (HSQC wave) where key hydrophobic residues of micelle-bound peptides are located in the troughs with weaker intensities, probably due to fast exchange between the free and bound forms. In all the cases, the identification of aromatic phenylalanines as a key membrane-binding residue is consistent with previous intermolecular Phe-lipid NOE observations. Furthermore, mutation of one of the key hydrophobic residues of KR-12 to Ala significantly reduced the antibacterial activity of the peptide mutants. These results illustrate that natural abundance heteronuclear-correlated NMR spectroscopy can be utilized to probe backbone structure and dynamics, and perhaps to map key membrane-binding residues of peptides in complex with micelles. 1H-13Cα HSQC wave, along with other NMR waves such as dipolar wave and chemical shift wave, offers novel insights into peptide-membrane interactions from different angles.  相似文献   
6.
真菌病害严重影响植物的生长发育。为了自我保护,植物进化出了许多抵御病原真菌入侵的策略,例如防御相关蛋白的产生。多聚半乳糖醛酸酶抑制蛋白(polygalacturonase-inhibiting proteins,PGIPs)是近年来研究较多的一种植物防御蛋白,它能与真菌分泌的多聚半乳糖醛酸酶(polygalacturonases,PGs)特异性结合,降低PGs水解植物细胞壁的活性并在植物体内累积能激活多种防御反应的长链寡聚半乳糖醛酸(oligogalacturonides,OGs),从而达到抑制真菌侵染的目的。主要介绍了PGIPs的结构、功能及其抗菌机理,并综述了PGIPs在国内外转基因抗病育种中的应用研究进展。  相似文献   
7.
Transformation of arachidonic acid in the rat anterior pituitary   总被引:1,自引:0,他引:1  
Rat anterior pituitaries were incubated with [1-14C]-arachidonic acid. The metabolites were purified by reversed-phase high pressure liquid chromatography. Conclusive identification of the compounds was performed by gas chromatography-mass spectrometry. The major metabolite of arachidonic acid was the 12-hydroxy-5,8,10,14-icosatetraenoic acid (0.1% of added radioactivity). Smaller amounts of 12-hydroxy-5,8,10-heptadecatrienoic acid and of 15-hydroxy-5,8,11,13-icosatetraenoic acid (0.01% of added radio-activity) were also isolated. Trace amounts of prostaglandins E2, D2 and F2α were detected.  相似文献   
8.
9.
The adult skeleton is a metabolically active organ system that undergoes continuous remodeling to remove old and/or stressed bone (resorption) and replace it with new bone (formation) in order to maintain a constant bone mass and preserve bone strength from micro-damage accumulation. In that remodeling process, cellular balances – adipocytogenesis/osteoblastogenesis and osteoblastogenesis/osteoclastogenesis – are critical and tightly controlled by many factors, including lipids as discussed in the present review.Interest in the bone lipid area has increased as a result of in vivo evidences indicating a reciprocal relationship between bone mass and marrow adiposity. Lipids in bones are usually assumed to be present only in the bone marrow. However, the mineralized bone tissue itself also contains small amounts of lipids which might play an important role in bone physiology. Fatty acids, cholesterol, phospholipids and several endogenous metabolites (i.e., prostaglandins, oxysterols) have been purported to act on bone cell survival and functions, the bone mineralization process, and critical signaling pathways. Thus, they can be regarded as regulatory molecules important in bone health. Recently, several specific lipids derived from membrane phospholipids (i.e., sphingosine-1-phosphate, lysophosphatidic acid and different fatty acid amides) have emerged as important mediators in bone physiology and the number of such molecules will probably increase in the near future. The present paper reviews the current knowledge about: (1°) bone lipid composition in both bone marrow and mineralized tissue compartments, and (2°) local actions of lipids on bone physiology in relation to their metabolism. Understanding the roles of lipids in bone is essential to knowing how an imbalance in their signaling pathways might contribute to bone pathologies, such as osteoporosis.  相似文献   
10.
Chalcones (1, 3-Diphenyl-2-propen-1-one) consist of a three carbon α, β-unsaturated carbonyl system and act as precursors for the biosynthesis of flavonoids in plants. However, laboratory synthesis of various chalcones has also been reported. Both natural and synthetic chalcones are known to exhibit a variety of pharmacological activities such as anti-inflammatory, antitumor, antibacterial, antifungal, antimalarial and antituberculosis. These promising activities, ease of synthesis and simple chemical structure have awarded chalcones considerable attraction. This review focuses on the anti-inflammatory effects of chalcones, caused by their inhibitory action primarily against the activities and expressions of four key inflammatory mediators viz., cyclooxygenase, prostaglandin E2, inducible NO synthase, and nuclear factor κB. Various methodologies for the synthesis of chalcones have been discussed. The potency of recently synthesized chalcones is given in terms of their IC50 values. Structure-Activity Relationships (SARs) of a variety of chalcone derivatives have been discussed. Computational methods were applied to calculate the ideal orientation of a typical chalcone scaffold against three enzymes, namely, cyclooxygenase-1, cyclooxygenase-2 and inducible NO synthase for the formation of stable complexes. The global market of anti-inflammatory drugs and its expected growth (from 2018 to 2026) have been discussed. SAR analysis, docking studies, and future prospects all together provide useful clues for the synthesis of novel chalcones of improved anti-inflammatory activities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号