首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   369篇
  免费   33篇
  国内免费   26篇
  2023年   6篇
  2022年   6篇
  2021年   12篇
  2020年   19篇
  2019年   16篇
  2018年   12篇
  2017年   16篇
  2016年   15篇
  2015年   18篇
  2014年   24篇
  2013年   48篇
  2012年   18篇
  2011年   20篇
  2010年   13篇
  2009年   13篇
  2008年   18篇
  2007年   20篇
  2006年   18篇
  2005年   21篇
  2004年   19篇
  2003年   16篇
  2002年   7篇
  2001年   8篇
  2000年   8篇
  1999年   4篇
  1998年   3篇
  1997年   4篇
  1996年   5篇
  1995年   2篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1973年   1篇
排序方式: 共有428条查询结果,搜索用时 31 毫秒
1.
The mechanical properties of cells are influenced by their microenvironment. Here we report cell stiffness alteration by changing the cell substrate stiffness for isolated cells and cells in contact with other cells. Polydimethylsiloxane (PDMS) is used to prepare soft substrates with three different stiffness values (173, 88 and 17 kPa respectively). Breast cancer cells lines, namely HBL-100, MCF-7 and MDA-MB-231 with different level of aggressiveness are cultured on these substrates and their local elasticity is investigated by vertical indentation of the cell membrane. Our preliminary results show an unforeseen behavior of the MDA-MB-231 cells. When cultured on glass substrate as isolated cells, they are less stiff than the other two types of cells, in agreement with the general statement that more aggressive and metastatic cells are softer. However, when connected to other cells the stiffness of MDA-MB-231 cells becomes similar to the other two cell lines. Moreover, the stiffness of MDA-MB-231 cells cultured on soft PDMS substrates is significantly higher than the stiffness of the other cell types, demonstrating thus the strong influence of the environmental conditions on the mechanical properties of the cells.  相似文献   
2.
3.
Conidia ofPenicillium variabile P16 were immobilized in polyurethane sponge and used in repeated-batch processes in a fluidized-bed reactor. Optimal conditions for production of glucose oxidase and catalase were: inoculum size, 10%; glucose concentration, 80 g L–1; Ca-carbonate concentration, 15 g L–1; temperature, 28°C and aeration rate, 4 VV–1 min–1. In an extended repeated-batch process, glucose oxidase activity was highest after the fourth batch and catalase activity was highest after the fifth batch. Scanning electron microscopy showed that the fungus grew only in the interior of carrier particles.  相似文献   
4.
Most green gemmules of Spongilla lacustris survived enclosure in ice at –20 °C for up to 30 days; however, their rate of germination at 20 °C was less rapid than that of control gemmules. The length of time spent at low temperature had little effect on gemmule survival. In contrast, repeated cooling to –20 °C and warming to 4 °C led to a progressive decline in gemmule viability. These results indicate that cold injury occurs primarily during transitions between high and low temperatures.  相似文献   
5.
Multiplexed single‐cell protein secretion analysis provides an in‐depth understanding of cellular heterogeneity in intercellular communications mediated by secreted proteins in both fundamental and clinical research. However, it has been challenging to increase the proteomic parameters co‐profiled from every single cell in a facile way. Herein, a simple method to improve the multiplexed proteomic parameters of PDMS microwell based single‐cell secretion analysis platform by sandwiching PDMS stencil in between two antibody‐coated glass slides is introduced. Two different antibody panels can be immobilized easily by static coating, without using sophisticated fluid handling or bulky equipment. 5‐plexed, 3‐fluorescence color single‐cell secretion assay is demonstrated with this platform to investigate human monocytic U937 cells in response to lipopolysaccharide and phorbol myristate acetate stimulation, which identified the existence of functional subsets dictated by different cytokine profiles. The technology introduced here is simple, easy to operate, which holds great potential to become a powerful tool for profiling multiplexed single‐cell cytokine secretion at high throughput to dissect cellular heterogeneity in secretome signatures.  相似文献   
6.
During evolution, sponges (Porifera) have honed the genetic toolbox and biosynthetic mechanisms for the fabrication of siliceous skeletal components (spicules). Spicules carry a protein scaffold embedded within biogenic silica (biosilica) and feature an amazing range of optical, structural, and mechanical properties. Thus, it is tempting to explore the low-energy synthetic pathways of spiculogenesis for the fabrication of innovative hybrid materials. In this synthetic biology approach, the uptake of multifunctional nonbiogenic nanoparticles (fluorescent, superparamagnetic) by spicule-forming cells of bioreactor-cultivated sponge primmorphs provides access to spiculogenesis. The ingested nanoparticles were detected within intracellular vesicles resembling silicasomes (silica-rich cellular compartments) and as cytosolic clusters where they lent primmorphs fluorescent/magnetic properties. During spiculogenesis, the nanoparticles initially formed an incomplete layer around juvenile, intracellular spicules. In the mature, extracellular spicules the nanoparticles were densely arranged as a surface layer that rendered the resulting composite fluorescent and magnetic. By branching off the conventional route of solid-state materials synthesis under harsh conditions, a new pathway has been opened to a versatile platform that allows adding functionalities to growing spicules as templates in living cells, using nonbiogenic nanoscale building blocks with multiple functionalities. The magnet-assisted alignment renders this composite with its fluorescent/magnetic properties potentially suitable for application in biooptoelectronics and microelectronics (e.g., microscale on-chip waveguides for applications of optical detection and sensing).  相似文献   
7.
Recent demands for non-toxic antifouling technologies have led to increased interest in coatings based on silicone elastomers that ‘release’ macrofouling organisms when hydrodynamic conditions are sufficiently robust. However, these types of coatings accumulate diatom slimes, which are not released even from vessels operating at high speeds ( > 30 knots). In this study, adhesion strength and motility of three common fouling diatoms (Amphora coffeaeformis var. perpusilla (Grunow) Cleve, Craspedostauros australis Cox and Navicula perminuta Grunow) were measured on a polydimethylsiloxane elastomer (PDMSE) and acid-washed glass. Adhesion of the three species was stronger to PDMSE than to glass but the adhesion strengths varied. The wall shear stress required to remove 50% of cells from PDMSE was 17 Pa for Craspedostauros, 24 Pa for Amphora and >> 53 Pa for Navicula; the corresponding values for glass were 3, 10 and 25 Pa. In contrast, the motility of the three species showed little or no correlation between the two surfaces. Craspedostauros moved equally well on glass and PDMSE, Amphora moved more on glass initially before movement ceased and Navicula moved more on PDMSE before movement ceased. The results show that fouling diatoms adhere more strongly to a hydrophobic PDMSE surface, and this feature may contribute to their successful colonization of low surface energy, foul-release coatings. The results also indicate that diatom motility is not related to adhesion strength, and motility does not appear to be a useful indicator of surface preference by diatoms.  相似文献   
8.
Barnacle adhesion strength was used to screen seventy-seven polydimethylsiloxane elastomeric coatings for fouling-release properties. The test coatings were designed to investigate the effect on barnacle adhesion strength of silicone fluid additive type, additive location, additive molecular weight, additive loading level, mixtures of additives, coating matrix type and coating fillers. The type of silicone fluid additive was the primary controlling factor in barnacle fouling-release. The type of silicone matrix in which the fluid resided was found to alter the effect on fouling-release. Two PDMS fluids, DMSC15 and DBE224, significantly reduced the adhesion strength of barnacles compared to unmodified elastomers. Optimum fouling-release performance was dependent on the interaction of fluid type and elastomeric matrix.  相似文献   
9.
Nanomaterials with superior physiochemical properties have been rapidly developed and integrated in every aspect of cell engineering and therapy for translating their great promise to clinical success. Here we demonstrate the multifaceted roles played by innovatively-designed nanomaterials in addressing key challenges in cell engineering and therapy such as cell isolation from heterogeneous cell population, cell instruction in vitro to enable desired functionalities, and targeted cell delivery to therapeutic sites for prompting tissue repair. The emerging trends in this interdisciplinary and dynamic field are also highlighted, where the nanomaterial-engineered cells constitute the basis for establishing in vitro disease model; and nanomaterial-based in situ cell engineering are accomplished directly within the native tissue in vivo. We will witness the increasing importance of nanomaterials in revolutionizing the concept and toolset of cell engineering and therapy which will enrich our scientific understanding of diseases and ultimately fulfill the therapeutic demand in clinical medicine.  相似文献   
10.
The first instar larva of the net-winged midge, Nothohoraia micrognathia Craig, 1969 (Diptera: Blephariceridae) is described. Instead of the primitive ring of eversible hooklets the pseudopods possess stiff apical setae. This character expression suggests that Nothohoraia is more closely related to the advanced Apistomyiini occurring outside New Zealand than to the two other New Zealand genera, Neocurupira and Peritheates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号