首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   5篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   1篇
  2019年   7篇
  2018年   8篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2014年   7篇
  2013年   8篇
  2012年   6篇
  2011年   6篇
  2010年   4篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2006年   5篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
排序方式: 共有80条查询结果,搜索用时 733 毫秒
1.
Glioblastoma is the most common and aggressive brain tumor type, with a mean patient survival of approximately 1 year. Many previous analyses of the glioma kinome have identified key deregulated pathways that converge and activate mammalian target of rapamycin (mTOR). Following the identification and characterization of mTOR-promoting activity in gliomagenesis, data from preclinical studies suggested the targeting of mTOR by rapamycin or its analogs (rapalogs) as a promising therapeutic approach. However, clinical trials with rapalogs have shown very limited efficacy on glioma due to the development of resistance mechanisms. Analysis of rapalog-insensitive glioma cells has revealed increased activity of growth and survival pathways compensating for mTOR inhibition by rapalogs that are suitable for therapeutic intervention. In addition, recently developed mTOR inhibitors show high anti-glioma activity. In this review, we recapitulate the regulation of mTOR signaling and its involvement in gliomagenesis, discuss mechanisms resulting in resistance to rapalogs, and speculate on strategies to overcome resistance. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).  相似文献   
2.
Na+/H+ exchanger regulatory factor 1 (NHERF1) is a scaffold protein known to interact with a number of cancer-related proteins. nherf1 Mutations (K172N and D301V) were recently identified in breast cancer cells. To investigate the functional properties of NHERF1, wild-type and cancer-derived nherf1 mutations were stably expressed in SKMES-1 cells respectively. NHERF1-wt overexpression suppressed the cellular malignant phenotypes, including proliferation, migration, and invasion. nherf1 Mutations (K172N and D301V) caused complete or partial loss of NHERF1 functions by affecting the PTEN/NHERF1/PDGFRβ complex formation, inactivating NHERF1 inhibition of PDGF-induced AKT and ERK activation, and attenuating the tumor-suppressor effects of NHERF1-wt. These results further demonstrated the functional consequences of breast cancer-derived nherf1 mutations (K172N and D301V), and suggested the causal role of NHERF1 in tumor development and progression.  相似文献   
3.
Several malignant tumors and fibrotic diseases are associated with PDGFRβ overexpression and excessive signaling, making this receptor attractive for molecular targeting and imaging approaches. A series of benzo[d]imidazole-quinoline derivatives were designed and synthesized to develop radioiodinated compounds as PDGFRβ-specific imaging probes. The structure activity relationship (SAR) evaluation of the designed compounds was performed. Among them, 2-[5-(2-methoxyethoxy)-1H-benzo[d]imidazol-1-yl]-8-(piperazin-1-yl)quinoline (5a) and 4-{2-[5-(2-methoxyethoxy)-1H-benzo[d]imidazol-1-yl]quinolin-8-yl}morpholine (5d) exhibited a relatively high PDGFRβ-TK inhibitory potency, whereas iodinated 5a derivative 5-iodo-2-[5-(2-methoxyethoxy)-1H-benzo[d]imidazol-1-yl]-8-(piperazin-1-yl)quinoline (8) exhibited a superior inhibitory potency as PDGFRβ inhibitor than iodinated 5d derivative 4-{5-iodo-2-[5-(2-methoxyethoxy)-1H-benzo[d]imidazol-1-yl]quinolin-8-yl}morpholine (11). Furthermore, [125I]8 and [125I]11 were synthesized and evaluated for PDGFRβ radioligand ability, both in vitro and in vivo. Cellular uptake experiments showed that [125I]8 had a higher uptake in BxPC3-luc cells as PDGFRβ-positive cells than [125I]11. Incubation of [125I]8 after pretreatment of PDGFRβ ligands significantly reduced the uptake of [125I]8. In biodistribution experiments using tumor-bearing mice, [125I]8 accumulation in the tumor 1?h postinjection was higher than that of the benzo[d]imidazol-quinoline derivative [125I]IIQP, used in our previous research. These results indicate that [125I]8 could be a promising PDGFRβ imaging agent. Although its clinical application requires further structural modifications, the results obtained in this research may be useful for the development of PDGFRβ-specific radioligands.  相似文献   
4.
Here, we developed a novel in vitro co-culture model, in which process-bearing astrocytes and isolated cerebral microvessels from mice were co-cultured. Astrocytes formed contacts with microvessels from both adult and neonatal mice. However, concentrated localization of the immunofluorescence signal for aquaporin-4 (AQP4) at contact sites between perivascular endfoot processes and blood vessels was only detected with neonatal mouse microvessels. Contact between astrocytic processes and microvessels was retained, whereas concentrated localization of AQP4 signal at contact sites was lost, by knockdown of dystroglycan or α-syntrophin, reflecting polarized localization of AQP4 at perivascular regions in the brain. Further, using our in vitro co-culture model, we found that astrocytes predominantly extend processes to pericytes located at the abluminal surface of microvessels, providing additional evidence that this model is representative of the in vivo situation. Altogether, we have developed a novel in vitro co-culture model that can reproduce aspects of the in vivo situation and is useful for assessing contact formation between astrocytes and blood vessels.  相似文献   
5.
Cadherins are homophilic cell-to-cell adhesion molecules that help cells respond to environmental changes. Newly formed cadherin junctions are associated with increased cell phosphorylation, but the pathways driving this signaling response are largely unknown. Since cadherins have no intrinsic signaling activity, this phosphorylation must occur through interactions with other signaling molecules. We previously reported that cadherin-11 engagement activates joint synovial fibroblasts, promoting inflammatory and degradative pathways important in rheumatoid arthritis (RA) pathogenesis. Our objective in this study was to discover interacting partners that mediate cadherin-11 signaling. Protein array screening showed that cadherin-11 extracellular binding domains linked to an Fc domain (cad11Fc) induced platelet-derived growth factor (PDGFR)-α phosphorylation in synovial fibroblasts and glioblastoma cells. PDGFRs are growth factor receptor tyrosine kinases that promote cell proliferation, survival, and migration in mesodermally derived cells. Increased PDGFR activity is implicated in RA pathology and associates with poor prognosis in several cancers, including sarcoma and glioblastoma. PDGFRα activation by cadherin-11 signaling promoted fibroblast proliferation, a signaling pathway independent from cadherin-11-stimulated IL-6 or matrix metalloproteinase (MMP)-3 release. PDGFRα phosphorylation mediated most of the cad11Fc-induced phosphatidyl-3-kinase (PI3K)/Akt activation, but only part of the mitogen-activated protein kinase (MAPK) response. PDGFRα-dependent signaling did not require cell cadherin-11 expression. Rather, cad11Fc immunoprecipitated PDGFRα, indicating a direct interaction between cadherin-11 and PDGFRα extracellular domains. This study is the first to report an interaction between cadherin-11 and PDGFRα and adds to our growing understanding that cadherin-growth factor receptor interactions help balance the interplay between tissue growth and adhesion.  相似文献   
6.
7.
Telocytes (TCs) are a distinct type of interstitial cells, which are featured with a small cellular body and long and thin elongations called telopodes (Tps). TCs have been widely identified in lots of tissues and organs including heart. Double staining for CD34/PDGFR‐β (Platelet‐derived growth factor receptor β) or CD34/Vimentin is considered to be critical for TC phenotyping. It has recently been proposed that CD34/PDGFR‐α (Platelet‐derived growth factor receptor α) is actually a specific marker for TCs including cardiac TCs although the direct evidence is still lacking. Here, we showed that cardiac TCs were double positive for CD34/PDGFR‐α in primary culture. CD34/PDGFR‐α positive cells (putative cardiac TCs) also existed in mice ventricle and human cardiac valves including mitral valve, tricuspid valve and aortic valve. Over 87% of cells in a TC‐enriched culture of rat cardiac interstitial cells were positive for PDGFR‐α, while CD34/PDGFR‐α double positive cells accounted for 30.25% of the whole cell population. We show that cardiac TCs are double positive for CD34/PDGFR‐α. Better understanding of the immunocytochemical phenotypes of cardiac TCs might help using cardiac TCs as a novel source in cardiac repair.  相似文献   
8.
The research on oral cancer has focused mainly on the cancer cells, their genetic changes and consequent phenotypic modifications. However, it is increasingly clear that the tumor microenvironment (TME) has been shown to be in a dynamic state of inter-relations with the cancer cells. The TME contains a variety of components including the non-cancerous cells (i.e., immune cells, resident fibroblasts and angiogenic vascular cells) and the ECM milieu [including fibers (mainly collagen and fibronectin) and soluble factors (i.e., enzymes, growth factors, cytokines and chemokines)]. Thus, it is currently assumed that TME is considered a part of the cancerous tissue and the functionality of its key components constitutes the setting on which the hallmarks of the cancer cells can evolve. Therefore, in terms of controlling a malignancy, one should control the growth, invasion and spread of the cancer cells through modifications in the TME components. This mini review focuses on the TME as a diagnostic approach and reports the recent insights into the role of different TME key components [such as carcinoma-associated fibroblasts (CAFs) and inflammation (CAI) cells, angiogenesis, stromal matrix molecules and proteases] in the molecular biology of oral carcinoma. Furthermore, the impact of TME components on clinical outcomes and the concomitant need for development of new therapeutic approaches will be discussed.  相似文献   
9.
10.
MAP kinase phosphatase-3 (MKP3), also known as DUSP6 or Pyst1, is a dual specificity phosphatase considered to selectively dephosphorylate extracellular-signal-regulated kinase 1/2 (Erk1/2). Here, we report that in NIH3T3 cells, MKP3 is induced in response to platelet-derived growth factor (PDGF)-BB treatment in an Erk1/2- and phosphatidylinositol 3-kinase (PI3K)-dependent manner, but independently of Erk5 expression. Silencing of MKP3 expression did not affect PDGF-BB-induced Erk1/2 or p38 phosphorylation; however, their basal level of phosphorylation was elevated. Furthermore, we found that PDGF-BB-mediated activation of Erk5 and Akt was enhanced when the MKP3 expression was reduced. Interfering with Mek1/2 or PI3K using the inhibitors CI-1040 and LY-294002, respectively, inhibited PDGF-BB-induced MKP3 expression. Functionally, we found that MKP3 silencing did not affect cell proliferation, but enhanced the chemotactic response toward PDGF-BB. Although both Akt and Erk5 have been linked to increased cell survival, downregulation of MKP3 did not alter the ability of PDGF-BB to protect NIH3T3 cells from starvation-induced apoptosis. However, we observed an increased apoptosis in untreated cells with reduced MKP3 expression. In summary, our data indicate that there is negative cross-talk between Erk1/2 and Erk5 that involves regulation of MKP3 expression, and that PI3K in addition to promoting Akt phosphorylation also negatively modulates Akt, through MKP3 expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号