首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2014年   1篇
  2010年   1篇
  2005年   1篇
  1998年   1篇
排序方式: 共有4条查询结果,搜索用时 31 毫秒
1
1.
Albumin is supposed to be the major antioxidant circulating in blood. This study examined the prevention of membrane lipid peroxidation by bovine serum albumin (BSA). Lipid peroxidation was induced by the exposing of enzymatically generated superoxide radicals to egg yolk phosphatidylcholine liposomes incorporating lipids with different charges in the presence of chelated iron catalysts. We used three kinds of Fe3+-chelates, which initiated reactions that were dependent on membrane charge: Fe3+-EDTA and Fe3+-EGTA catalyzed peroxidation in positively and negatively charged liposomes, respectively, and Fe3+-NTA, a renal carcinogen, catalyzed the reaction in liposomes of either charge. Fe3+-chelates initiated more lipid peroxidation in liposomes with increased zeta potentials, followed by an increase of their availability for the initiation of the reaction at the membrane surface. BSA inhibits lipid peroxidation by preventing the interaction of iron chelate with membranes, followed by a decrease of its availability in a charge-dependent manner depending on the iron-chelate concentration: one is accompanied and the other is unaccompanied by a change in the membrane charge. The inhibitory effect of BSA in the former at high concentrations of iron chelate would be attributed to its electrostatic binding with oppositely charged membranes. The inhibitory effect in the latter at low concentrations of iron chelate would be caused by BSA binding with iron chelates and keeping them away from membrane surface where lipid peroxidation is initiated. Although these results warrant further in vivo investigation, it was concluded that BSA inhibits membrane lipid peroxidation by decreasing the availability of iron for the initiation of membrane lipid peroxidation, in addition to trapping active oxygens and free radicals.  相似文献   
2.
3.
A new liquid chromatography mass spectrometry (LC/MS) method has been developed for the qualitative and quantitative analyses of phosphatidylcholine hydroperoxides (PC-OOH) in human plasma using a synthetic hydroperoxide (1-stearoyl-2-erucoyl-PC monohydroperoxide, PC 18:0/22:1-OOH) as an internal standard. 1-Stearoyl-2-linoleoyl-PC monohydroperoxide (PC 18:0/18:2-OOH) was identified in plasma by LC/MS by comparison with an authentic standard. The calibration curves obtained for 1-palmitoyl-2-linoleoyl-PC monohydroperoxide, PC 16:0/18:2-OOH and PC 18:0/18:2-OOH were linear throughout the calibration range (0.1–1.0 pmol). The limit of detection (LOD) (S/N = 3:1) was 0.01 pmol, and the limit of quantification (LOQ) (S/N = 6:1) was 0.1 pmol for both PC 16:0/18:2-OOH and PC 18:0/18:2-OOH. Plasma concentrations of PC 16:0/18:2-OOH and PC 18:0/18:2-OOH were 89 and 32 nM, respectively, in a healthy volunteer.  相似文献   
4.
Polyunsaturated fatty acids and their esters are known to be susceptible to free radical-mediated oxidation, whereas cholesterol is thought to be more resistant to oxidation. In fact, it has been observed that in the case of plasma lipid peroxidation, the amount of oxidation products of polyunsaturated fatty acids such as linoleic acid was higher than that of cholesterol. In contrast, during oxidative stress-induced cellular lipid peroxidation, oxidation products of cholesterol such as 7-hydroxycholesterol (7-OHCh) were detected in greater amounts than those of linoleates such as hydroxyoctadecadienoic acid (HODE). There are several forms of oxidation products of cholesterol and linoleates in vivo, namely, hydroperoxides, as well as the hydroxides of both the free and ester forms of cholesterol and linoleates. To evaluate these oxidation products, a method used to determine the lipid oxidation products after reduction and saponification was developed. With this method, several forms of oxidation products of cholesterol and linoleates are measured as total 7-OHCh (t7-OHCh) and total HODE (tHODE), respectively. During free radical-mediated lipid peroxidation in plasma, the amount of tHODE was 6.3-fold higher than that of t7-OHCh. In contrast, when Jurkat cells were exposed to free radicals, the increased amount of cellular t7-OHCh was 5.7-fold higher than that of tHODE. Higher levels of t7-OHCh than those of tHODE have also been observed in selenium-deficient Jurkat cells and glutamate-treated neuronal cells. These results suggest that, in contrast to plasma oxidation, cellular cholesterol is more susceptible to oxidation than cellular linoleates. Collectively, cholesterol oxidation products at the 7-position may be a biomarker of cellular lipid peroxidation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号