首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   5篇
  2013年   6篇
  2012年   2篇
  2010年   2篇
  2009年   2篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  1999年   1篇
排序方式: 共有32条查询结果,搜索用时 31 毫秒
1.
Poly(ADP-ribosyl)ation is an important post-translational modification which mostly affects nuclear proteins. The major roles of poly(ADP-ribose) synthesis are assigned to DNA damage signalling during base excision repair, apoptosis and excitotoxicity. The transient nature and modulation of poly(ADP-ribose) levels depend mainly on the activity of poly(ADP-ribose) polymerase-1 (PARP-1) and poly(ADP-ribose) glycohydrolase (PARG), the key catabolic enzyme of poly(ADP-ribose). Given the fact that PARG substrate, poly(ADP-ribose), is found almost exclusively in the nucleus and that PARG is mainly localized in the cytoplasm, we wanted to have a closer look at PARG subcellular localization in order to better understand the mechanism by which PARG regulates intracellular poly(ADP-ribose) levels. We examined the subcellular distribution of PARG and of its two enzymatically active C-terminal apoptotic fragments both biochemically and by fluorescence microscopy. Green fluorescent protein (GFP) fusion proteins were constructed for PARG (GFP-PARG), its 74 kDa (GFP-74) and 85 kDa (GFP-85) apoptotic fragments and transiently expressed in COS-7 cells. Localization experiments reveal that all three fusion proteins localize predominantly to the cytoplasm and that a fraction also co-localizes with the Golgi marker FTCD. Moreover, leptomycin B, a drug that specifically inhibits nuclear export signal (NES)-dependent nuclear export, induces a redistribution of GFP-PARG from the cytoplasm to the nucleus and this nuclear accumulation is even more pronounced for the GFP-74 and GFP-85 apoptotic fragments. This observation confirms our hypothesis for the presence of important regions in the PARG sequence that would allow the protein to engage in CRM1-dependent nuclear export. Moreover, the altered nuclear import kinetics found for the apoptotic fragments highlights the importance of PARG N-terminal sequence in modulating PARG nucleocytoplasmic trafficking properties.  相似文献   
2.
Poly(ADP-ribosylation) of proteins following DNA damage is well studied and the use of poly(ADP-ribose) polymerase (PARP) inhibitors as therapeutic agents is an exciting prospect for the treatment of many cancers. Poly(ADP-ribose) glycohydrolase (PARG) has endo- and exoglycosidase activities which can cleave glycosidic bonds, rapidly reversing the action of PARP enzymes. Like addition of poly(ADP-ribose) (PAR) by PARP, removal of PAR by PARG is also thought to be required for repair of DNA strand breaks and for continued replication at perturbed forks. Here we use siRNA to show a synthetic lethal relationship between PARG and BRCA1, BRCA2, PALB2, FAM175A (ABRAXAS) and BARD1. In addition, we demonstrate that MCF7 cells depleted of these proteins are sensitive to Gallotannin and a novel and specific PARG inhibitor PDD00017273. We confirm that PARG inhibition increases endogenous DNA damage, stalls replication forks and increases homologous recombination, and propose that it is the lack of homologous recombination (HR) proteins at PARG inhibitor-induced stalled replication forks that induces cell death. Interestingly not all genes that are synthetically lethal with PARP result in sensitivity to PARG inhibitors, suggesting that although there is overlap, the functions of PARP and PARG may not be completely identical. These data together add further evidence to the possibility that single treatment therapy with PARG inhibitors could be used for treatment of certain HR deficient tumours and provide insight into the relationship between PARP, PARG and the processes of DNA repair.  相似文献   
3.
Fluorination of metabolic hotspots in a molecule is a common medicinal chemistry strategy to improve in vivo half-life and exposure and, generally, this strategy offers significant benefits. Here, we report the application of this strategy to a series of poly-ADP ribose glycohydrolase (PARG) inhibitors, resulting in unexpected in vivo toxicity which was attributed to this single-atom modification.  相似文献   
4.
Ischemic heart disease is a leading cause of death worldwide. Myocardial ischemia results in reduced coronary flow, followed by diminished oxygen and nutrient supply to the heart. Reperfusion to an ischemic myocardium often augments the ischemic damage, known as ischemia-reperfusion (I/R) injury. Number of studies demonstrated that the hyperlipidemic myocardium is rather sensitive and more vulnerable to I/R-induced myocardial injury. Repeated brief ischemia and reperfusion cycles, termed as ischemic preconditioning, given before a sustained ischemia is known to reduce myocardial damage occur as a result of I/R. A plethora of evidence supports the fact that preconditioning is one of the promising interventional strategies having an ability to limit I/R-induced myocardial injury. Despite this fact, the preconditioning-mediated cardioprotection is blunted in chronic hyperlipidemic condition. This suggests that preconditioning is moderately a ‘healthy heart protective phenomenon’. The mechanisms by which chronic hyperlipidemia abrogates cardioprotective effects of preconditioning are uncertain and are not completely understood. The impaired opening of mitochondrial-KATP channels, eNOS uncoupling and excessive generation of superoxides in the hyperlipidemic myocardium could play a role in attenuating preconditioning-mediated myocardial protection against I/R injury. Moreover, hyperlipidemia-induced loss of cardioprotective effect of preconditioning is associated with redistribution of both sarcolemmal and mitochondrial Connexin 43. We addressed, in this review, the potential mechanisms involved in hyperlipidemia-induced impairment of myocardial preconditioning. Additionally, novel pharmacologic interventions to attenuate hyperlipidemia-associated exaggerated I/R-induced myocardial injury have been discussed.  相似文献   
5.
6.
Poly(ADP-ribose) glycohydrolase (PARG) is the only protein known to catalyze hydrolysis of ADP-ribose (ADPR) polymers to free ADP-ribose. While numerous genes encode different poly(ADP-ribose) polymerases (PARPs) that all synthesize ADP-ribose polymer, only a single gene coding for PARG has been detected in mammalian cells. Here, we describe two splice variants of human PARG mRNA, which lead to expression of PARG isoforms of 102 kDa (hPARG102) and 99 kDa (hPARG99) in addition to the full-length PARG protein (hPARG111). These splice variants differ from hPARG111 by the lack of exon 1 (hPARG102) or exons 1 and 2 (hPARG99). They are generated by the utilization of ambiguous splice donor sites in the PARG gene 5' untranslated region. The hPARG111 isoform localizes to the nucleus, whereas hPARG102 and hPARG99 are cytoplasmic proteins. The nuclear targeting of hPARG111 is due to a nuclear localization signal (NLS) in exon 1 that was mapped to the amino acids (aa) (10)CTKRPRW(16). Immunocytochemistry, immunoblotting, and PARG enzyme activity measurements show that the cytoplasmic isoforms of PARG account for most of the PARG activity in cells in the absence and presence of genotoxic stress. The predominantly cytoplasmic location of cellular PARG is intriguing as most known cellular PARPs have a nuclear localization.  相似文献   
7.
Poly(ADP-ribose) glycohydrolase (PARG), removes poly(ADP-ribose) subunits from proteins that have previously been modified by poly(ADP-ribose) polymerse. This ensures that modification is transient, and it is suggested that removal of poly(ADP-ribose) is essential for some types of DNA repair. Here we show increased γH2AX foci formation and increased homologous recombination when PARG is inhibited. These effects are reduced when replication is inhibited, suggesting that in the absence of PARG activity, replication forks collapse, and homologous recombination is induced for repair. Consistent with this, we show that cells deficient in the homologous recombination protein BRCA2 are sensitive to PARG depletion or inhibition. These data raise the exciting possibility that PARG inhibitors may be used to specifically kill BRCA2 and other homologous recombination-deficient tumors.  相似文献   
8.
Drosophila Hrp38, a homolog of human hnRNP A1, has been shown to regulate splicing, but its function can be modified by poly(ADP-ribosyl)ation. Notwithstanding such findings, our understanding of the roles of poly(ADP-ribosyl)ated Hrp38 on development is limited. Here, we have demonstrated that Hrp38 is essential for fly eye development based on a rough-eye phenotype with disorganized ommatidia observed in adult escapers of the hrp38 mutant. We also observed that poly(ADP-ribose) glycohydrolase (Parg) loss-of-function, which caused increased Hrp38 poly(ADP-ribosyl)ation, also resulted in the rough-eye phenotype with disrupted ommatidial lattice and reduced number of photoreceptor cells. In addition, ectopic expression of DE-cadherin, which is required for retinal morphogenesis, fully rescued the rough-eye phenotype of the hrp38 mutant. Similarly, Parg mutant eye clones had decreased expression level of DE-cadherin with orientation defects, which is reminiscent of DE-cadherin mutant eye phenotype. Therefore, our results suggest that Hrp38 poly(ADP-ribosyl)ation controls eye pattern formation via regulation of DE-cadherin expression, a finding which has implications for understanding the pathogenic mechanisms of Hrp38-related Fragile X syndrome and PARP1-related retinal degeneration diseases.  相似文献   
9.
TRPM2 is a Ca2+-permeable non-selective cation channel that can be activated by adenosine dinucleotides, hydrogen peroxide, or intracellular Ca2+. The protein is expressed in a wide variety of cells, including neurons in the brain, immune cells, endocrine cells, and endothelial cells. This channel is also well expressed in β-cells in the pancreas. Insulin secretion from pancreatic β-cells is the primary mechanism by which the concentration of blood glucose is reduced. Thus, impairment of insulin secretion leads to hyperglycemia and eventually causes diabetes. Glucose is the principal stimulator of insulin secretion. The primary pathway involved in glucose-stimulated insulin secretion is the ATP-sensitive K+ (KATP) channel to voltage-gated Ca2+ channel (VGCC)-mediated pathway. Increases in the intracellular Ca2+ concentration are necessary for insulin secretion, but VGCC is not sufficient to explain [Ca2+]i increases in pancreatic β-cells and the resultant secretion of insulin. In this review, we focus on TRPM2 as a candidate for a [Ca2+]i modulator in pancreatic β-cells and its involvement in insulin secretion and development of diabetes. Although further analyses are needed to clarify the mechanism underlying TRPM2-mediated insulin secretion, TRPM2 could be a key player in the regulation of insulin secretion and could represent a new target for diabetes therapy.  相似文献   
10.
Proper and timely regulation of cellular processes is fundamental to the overall health and viability of organisms across all kingdoms of life. Thus, organisms have evolved multiple highly dynamic and complex biochemical signaling cascades in order to adapt and survive diverse challenges. One such method of conferring rapid adaptation is the addition or removal of reversible modifications of different chemical groups onto macromolecules which in turn induce the appropriate downstream outcome. ADP-ribosylation, the addition of ADP-ribose (ADPr) groups, represents one of these highly conserved signaling chemicals. Herein we outline the writers, erasers and readers of ADP-ribosylation and dip into the multitude of cellular processes they have been implicated in. We also review what we currently know on how specificity of activity is ensured for this important modification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号