首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   7篇
  国内免费   3篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   6篇
  2019年   2篇
  2018年   5篇
  2017年   1篇
  2016年   1篇
  2015年   6篇
  2014年   15篇
  2013年   20篇
  2012年   17篇
  2011年   27篇
  2010年   16篇
  2009年   3篇
  2008年   1篇
  2007年   4篇
  2006年   5篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  1996年   1篇
排序方式: 共有142条查询结果,搜索用时 15 毫秒
1.
Innate immunity is generally initiated with recognition of conserved pathogen-associated molecular patterns (PAMPs). PAMPs are perceived by pattern recognition receptors (PRRs), leading to activation of a series of immune responses, including the expression of defense genes, ROS production and activation of MAP kinase. Recent progress has indicated that receptor-like cytoplasmic kinases (RLCKs) are directly activated by ligand- activated PRRs and initiate pattern -triggered immunity (PTI) in both Arabidopsis and rice. To suppress PTI, pathogens inhibit the RLCKs by many types of effectors, including AvrAC, AvrPphB and Xoo1488. In this review, we summarize recent advances in RLCK-mediated PTI in plants.  相似文献   
2.
Toll-like receptors in the gastrointestinal tract can influence intestinal homeostasis and play a role in the repair and restitution of intestinal epithelium following tissue damage. In our previous study a statistically significant increase in the level of TLR4 and TLR2 gene expression was observed in rats in early stages of hymenolepidosis. Moreover, the immunopositive cell number and the intensity of immunohistochemical staining (indicating the presence of TLRs within intestinal epithelial cells) increased over the infection period.  相似文献   
3.
The tyrosine‐sulfated peptides PSKα and PSY1 bind to specific leucine‐rich repeat surface receptor kinases and control cell proliferation in plants. In a reverse genetic screen, we identified the phytosulfokine (PSK) receptor PSKR1 as an important component of plant defense. Multiple independent loss‐of‐function mutants in PSKR1 are more resistant to biotrophic bacteria, show enhanced pathogen‐associated molecular pattern responses and less lesion formation after infection with the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. By contrast, pskr1 mutants are more susceptible to necrotrophic fungal infection with Alternaria brassicicola, show more lesion formation and fungal growth which is not observed on wild‐type plants. The antagonistic effect on biotrophic and necrotrophic pathogen resistance is reflected by enhanced salicylate and reduced jasmonate responses in the mutants, suggesting that PSKR1 suppresses salicylate‐dependent defense responses. Detailed analysis of single and multiple mutations in the three paralogous genes PSKR1, ‐2 and PSY1‐receptor (PSY1R) determined that PSKR1 and PSY1R, but not PSKR2, have a partially redundant effect on plant immunity. In animals and plants, peptide sulfation is catalyzed by a tyrosylprotein sulfotransferase (TPST). Mutants lacking TPST show increased resistance to bacterial infection and increased susceptibility to fungal infection, mimicking the triple receptor mutant phenotypes. Feeding experiments with PSKα in tpst‐1 mutants partially restore the defense‐related phenotypes, indicating that perception of the PSKα peptide has a direct effect on plant defense. These results suggest that the PSKR subfamily integrates growth‐promoting and defense signals mediated by sulfated peptides and modulates cellular plasticity to allow flexible adjustment to environmental changes.  相似文献   
4.
We have explored the pathological role of the MyD88 signaling pathway via Toll-like receptors (TLRs) that mediate the recognition of pathogen-associated molecular patterns (PAMPs) in a murine model of autoimmune hepatitis induced by administering Concanavalin A (ConA). We first found that various TLRs and MyD88 molecules were expressed in liver of Con A-treated and untreated wild-type (WT) mice including liver macrophages. Flowcytometric analysis revealed that liver CD11b+CD11c and CD11b+CD11c+ antigen-presenting cells express TLR2, although NK and NKT cells did not. When WT and MyD88−/− mice were intravenously administered with Con A, the severity of hepatitis was significantly lower in Con A-injected MyD88−/− mice than in WT mice in terms of the histopathology, the levels of serum transaminase and pro-inflammatory cytokines (TNF-α, IFN-γ, and IL-6), and upregulation of CD80/CD86 and TNF-α on/in liver macrophages. The results provide evidence of a possible contribution of the TLRs-MyD88 signaling pathway in activating TLR-expressing liver macrophages in the autoimmune hepatitis model, and thus indicate that the strategy of blockade of pathological pathogens via the intestinal lumen may be feasible for the treatment of the disease.  相似文献   
5.
The AvrE superfamily of type III effectors (T3Es) is widespread among type III‐dependent phytobacteria and plays a crucial role during bacterial pathogenesis. Members of the AvrE superfamily are vertically inherited core effectors, indicating an ancestral acquisition of these effectors in bacterial plant pathogens. AvrE‐T3Es contribute significantly to virulence by suppressing pathogen‐associated molecular pattern (PAMP)‐triggered immunity. They inhibit salicylic acid‐mediated plant defences, interfere with vesicular trafficking and promote bacterial growth in planta. AvrE‐T3Es elicit cell death in both host and non‐host plants independent of any known plant resistance protein, suggesting an original interaction with the plant immune system. Recent studies in yeast have indicated that they activate protein phosphatase 2A and inhibit serine palmitoyl transferase, the first enzyme of the sphingolipid biosynthesis pathway. In this review, we describe the current picture that has emerged from studies of the different members of this fascinating large family.  相似文献   
6.
We characterize a novel pathogen recognition protein obtained from the lepidopteran Galleria mellonella. This protein recognizes Escherichia coli, Micrococcus luteus, and Candida albicans via specific binding to lipopolysaccharides, lipoteichoic acid, and β-1,3-glucan, respectively. As a multiligand receptor capable of coping with a broad variety of invading pathogens, it is constitutively produced in the fat body, midgut, and integument but not in the hemocytes and is secreted into the hemolymph. The protein was confirmed to be relevant to cellular immune response and to further function as an opsonin that promotes the uptake of invading microorganisms into hemocytes. Our data reveal that the mechanism by which a multiligand receptor recognizes microorganisms contributes substantially to their phagocytosis by hemocytes. A better understanding of an opsonin with the required repertoire for detecting diverse invaders might provide us with critical insights into the mechanisms underlying insect phagocytosis.  相似文献   
7.
Pseudallescheria boydii (Scedosporium apiospermum) is a saprophytic fungus widespread in the environment, and has recently emerged as an agent of localized as well as disseminated infections, particularly mycetoma, in immunocompromised and immunocompetent hosts. We have previously shown that highly purified α-glucan from P. boydii activates macrophages through Toll-like receptor TLR2, however, the mechanism of P. boydii recognition by macrophage is largely unknown. In this work, we investigated the role of innate immune receptors in the recognition of P. boydii. Macrophages responded to P. boydii conidia and hyphae with secretion of proinflammatory cytokines. The activation of macrophages by P. boydii conidia required functional MyD88, TLR4, and CD14, whereas stimulation by hyphae was independent of TLR4 and TLR2 signaling. Removal of peptidorhamnomannans from P. boydii conidia abolished induction of cytokines by macrophages. A fraction highly enriched in rhamnomannans was obtained and characterized by NMR, high performance TLC, and GC-MS. Preparation of rhamnomannans derived from P. boydii triggered cytokine release by macrophages, as well as MAPKs phosphorylation and IκBα degradation. Cytokine release induced by P. boydii-derived rhamnomannans was dependent on TLR4 recognition and required the presence of non-reducing end units of rhamnose of the rhamnomannan, but not O-linked oligosaccharides from the peptidorhamnomannan. These results imply that TLR4 recognizes P. boydii conidia and this recognition is at least in part due to rhamnomannans expressed on the surface of P. boydii.  相似文献   
8.
Toll-like receptors (TLR) detect pathogen-associated molecular patterns (PAMP) and play a crucial role in triggering immunity. Due to their large surfaces in direct contact with the environment, mucosal tissues are the major sites of PAMP-TLR signalling. How innate and adaptive immunity are triggered through flagellin-TLR5 interaction is the main focus of the review. In view of recent reports on genetic polymorphism, we will summarize the impact of TLR5 on the susceptibility to mucosal infections and on various immuno-pathologies. Finally, the contribution of TLRs in the induction and maintenance of mucosal homeostasis and commensal discrimination is discussed.  相似文献   
9.
《Cell》2022,185(4):614-629.e21
  1. Download : Download high-res image (270KB)
  2. Download : Download full-size image
  相似文献   
10.
The CNS (central nervous system) is unquestionably the central organ that regulates directly or indirectly all physiological systems in the mammalian body. Yet, when considering the defence of the CNS from pathogens, the CNS has often been considered passive and subservient to the pro-inflammatory responses of the immune system. In this view, neuroinflammatory disorders are examples of when the tail (the immune system) wags the dog (the CNS) to the detriment of an individual''s function and survival.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号