首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3220篇
  免费   106篇
  国内免费   93篇
  2023年   16篇
  2022年   37篇
  2021年   29篇
  2020年   36篇
  2019年   57篇
  2018年   80篇
  2017年   61篇
  2016年   52篇
  2015年   49篇
  2014年   145篇
  2013年   291篇
  2012年   115篇
  2011年   252篇
  2010年   151篇
  2009年   177篇
  2008年   188篇
  2007年   192篇
  2006年   177篇
  2005年   178篇
  2004年   121篇
  2003年   107篇
  2002年   103篇
  2001年   84篇
  2000年   41篇
  1999年   52篇
  1998年   58篇
  1997年   56篇
  1996年   62篇
  1995年   43篇
  1994年   47篇
  1993年   43篇
  1992年   32篇
  1991年   23篇
  1990年   21篇
  1989年   22篇
  1988年   30篇
  1987年   20篇
  1986年   11篇
  1985年   17篇
  1984年   26篇
  1983年   22篇
  1982年   14篇
  1981年   14篇
  1980年   15篇
  1979年   17篇
  1978年   8篇
  1977年   10篇
  1976年   6篇
  1975年   4篇
  1973年   4篇
排序方式: 共有3419条查询结果,搜索用时 15 毫秒
1.
Nitrogen dioxide less than 100 ppm in air induced lipid peroxidation of liposome composed of l-palmitoyl-2-arachidonylphosphatidylcholine as assessed by thiobarbituric acid reactivity. The nitrogen dioxide-induced lipid peroxidation was enhanced by cysteine, glutathione and bovine serum albumin. While the activity of nitrogen dioxide in air to induce single strand breaks of supercoiled plasmid DNA was low, the breaking was remarkably enhanced by cysteine, glutathione and bovine serum albumin. ESR spin trapping using 5,5-dimethyl-1-pyrroline N-oxide showed that certain strong oxidant(s) were generated by interaction of nitrogen dioxide and cysteine. The spin trapping using 3,5-dibromo-4-nitrosobenzene-sulfonate suggested that sulfur-containing radicals were generated by interaction of nitrogen dioxide and cysteine or glutathione. Hence, certain sulfur-containing radicals generated by the interaction which could effectively induce lipid peroxidation and DNA strand breaks.  相似文献   
2.
Compelling evidence suggests that low-density lipoprotein (LDL) is oxidized by cells within the arterial intima and that, once oxidized, it is profoundly atherogenic. The precise mechanism(s) by which cells promote the oxidation of LDL in vivo are not known; in vitro, however, oxidation of LDL can be enhanced by a number of differing mechanisms, including reaction with free and protein-bound metal ions, thiols, reactive oxygen species, lipoxygenase, myeloperoxidase and peroxynitrite. This review is concerned with the mechanisms by which cells enhance the oxidation of LDL in the presence of transition metals; in particular, the regulation, pro- and anti-oxidant consequences, and mechanism of action of cellular thiol production are examined, and contrasted with thiol-independent oxidation of LDL in the presence of transition metals.  相似文献   
3.
Paraquat (1,1'-dimethyl-4,4'-bipyridinium), a widely used non-selective herbicide, is a redox cycling agent with adverse effects on dopamine systems. Epidemiological data have shown that exposure to paraquat is one of the several risk factors for Parkinson's disease. We have already shown that cyclo(His-Pro), an endogenous cyclic dipeptide produced by the cleavage of the thyrotropin releasing hormone, has a cytoprotective effect through a mechanism involving Nrf2 activation that decreases production of reactive oxygen species and increases glutathione synthesis. Using primary neuronal cultures and PC12 cells as targets of paraquat neurotoxicity, we addressed whether and how cyclo(His-Pro) causes cellular protective response against paraquat-mediated cell death. We found that cyclo(His-Pro) attenuated reactive oxygen species production, and prevented glutathione depletion by up-regulating Nrf2 gene expression, triggering its nuclear accumulation and activating the expression of heme oxygenase1. These protective effects were abolished by RNA interference-mediated Nrf2 knock down whereas were unaffected by RNA interference-mediated Keap1 knock down. Inhibition of heme oxygenase activity decreased cyclo(His-Pro)-induced neuroprotection. These results suggest that cyclo(His-Pro), acting as a selective activator of the brain modulable Nrf2 pathway, may be a promising candidate as neuroprotective agent that act through induction of phase II genes.  相似文献   
4.
Blood was obtained from 564 11-yr-old children who had participated since birth in a multidisciplinary health and development study. Serum zinc concentration did not differ between the boys and the girls (mean±SD: 91=17 μg/100 mL,n=453). Five-6% of serum zinc values were low; although there was a weak correlation with height, none of the boys with low values were below the 10th percentile for height for this group. Serum copper concentration (112±24 μg/100 mL,n=454) was unrelated to sex, height, weight, body mass index, socioeconomic status (SES), or iron status. Blood selenium concentration (49±10 ng/mL,n=564) was lower than previously reported for Dunedin children; it was higher in children in the lower SES categories. The data represent normal values for healthy, 11-yr-old NZ children.  相似文献   
5.
Differences in the apparent molecular weights of the subunits of glutathione reductase (EC 1.6.4.2) from pea chloroplasts and corn mesophyll chloroplasts have been recently reported. In order to more fully describe the differences between the enzymes from these two sources, glutathione reductase from the mesophyll chloroplasts of corn seedlings ( Zea mays L. cv. G-4507) has been purified 200-fold by affinity chromatography using adenosine 2',5'-disphosphate agarose. The purified enzyme had a specific activity of 26 μmol NADPH oxidized (mg protein)-1 min-1. The native enzyme had a relative molecular weight of 190 ± 30 kDa and exhibited polypeptides of 65, 63, 34, and 32 kDa when separated on sodium dodecylsulfate-polyacrylamide gels. Comparisons of the results from electroblotting, native molecular weight and subunit molecular weight analyses suggest that the enzyme exists as a heterotetramer. Optimal enzyme activity was obtained at pH 8 in N-2-hydroxyethyl-piperazine-N'-2-ethanesulfonic acid (HEPES-NaOH) buffer. The sulfhydryl reagent, n -ethylmaleimide, inhibited enzymatic activity when incubated in the presence of NADPH while no inhibition was detected with oxidized glutathione in the incubation mixture. Reduced glutathione (5 m M ) inactivated the enzyme by 50%. This inactivation followed first order kinetics with a rate constant of 0.0028 s-1. The enzyme was also inactivated by NADPH. The inactivation reached ca 90% within 30 min and followed first order kinetics with a rate constant of 0.0015 s-1.  相似文献   
6.
Plumbagin was administered to rats at a concentration of 1,2,4,8 and 16 mg per kg body weight. After 24 h lipid peroxide levels were found to decrease in subcellular fractions of liver. Plumbagin inhibited ascorbate and nicotinafde adenine dinucleotide phosphate (reduced) dependent lipid peroxidation but was without any effect on cumene hydroperoxide dependent lipid peroxidation. Injection of 16 mg of plumbagin per kg body weight was found to decrease liver total reduced glutathione and also fcrosomal glucose-6-phosphatase. The results are discussed with reference to the anti- and prooxidant properties of plumbagin.  相似文献   
7.
Summary Cell surface gamma-glutamyl transpeptidese activity in cultured neoplastic astrocytes was significantly increased upon treatment of the cells with the hepatoprotective disulfide, cystamine. The cystamine effect was sensitive to cycloheximide and could be significantly depressed by exogenous glutathione. Surface gamma-glutamyl transpeptidase activity was also modulated by the presence in the culture medium of the unsaturated fatty acids, linoleic acid and arachidonic acid. Metabolism of the fatty acids via the cyclooxygenase pathway was not a prerequisite for their modulation of the glycoprotein ectoenzyme. Lipoxygenase, however, was found to potentiate the unsaturated fatty acid effect in neoplastic astrocytes. Lipoxygenase is reported to catalyze the conversion of unsaturated fatty acids to their corresponding peroxides. The data indicate an oxidative influence on the control of gamma-glutamyl transpeptidase activity.  相似文献   
8.
The intracellular concentrations of total glutathione, GSSG and protein · S-SG, the total excreted glutathione concentration, and the susceptibility towards GSH-reacting compounds were assayed in strains of Escherichia coli deficient in biosynthesis and/or reduction of glutathione. A deficiency in glutathione reductase displaced the glutathione status towards the oxidized forms. This displacement was more clearly appreciated in strains additionally deficient in glutathione biosynthesis. A deficiency in catalase activity also produced an increase in the oxidation of glutathione. The most severe changes were observed in the concentrations of protein-glutathione mixed disulfides and in the amount of glutathione excreted to the medium. Increased sensitivities towards compounds known to interact with cellular GSH were observed in glutathione reductase deficient strains, although these effects were enhanced in strains additionally deficient in GSH biosynthesis  相似文献   
9.
10.
Two-year-old red spruce seedlings were exposed to various levels ot ozone, from 0.4 to 3 times ambient levels, in open-top chambers in Ithaca, NY, USA. Exposures, which varied with changes in day length, commenced on May 30, 1987 and continued until December 14, 1987. Seedling biomass, carbohydrate contents, pigment contents, and rate of electron transport were assessed twice monthly during the fumigation period. Orthogonal quadratic or cubic polynomials were used to model the response through time each variable measured. A one-way analysis of variance model was fitted to every regression coefficient in each polynomial model to test for ozone effects on seasonal physiological patterns. Ozone did not influence growth, foliar pigment content, foliar starch content, root carbohydrate content, or rate of electron transport. The seasonal change of needle raffinose content differed between exposed to low (0.4 ×, 1×) and high (2×, 3×) ozone levels. There was also a trend towards reduced total soluble sugar content foliage during late autumn in higher ozone treatments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号