首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1371篇
  免费   32篇
  国内免费   37篇
  1440篇
  2023年   7篇
  2022年   16篇
  2021年   12篇
  2020年   16篇
  2019年   14篇
  2018年   18篇
  2017年   18篇
  2016年   17篇
  2015年   16篇
  2014年   50篇
  2013年   86篇
  2012年   28篇
  2011年   39篇
  2010年   31篇
  2009年   56篇
  2008年   38篇
  2007年   46篇
  2006年   50篇
  2005年   46篇
  2004年   70篇
  2003年   44篇
  2002年   40篇
  2001年   30篇
  2000年   34篇
  1999年   31篇
  1998年   27篇
  1997年   28篇
  1996年   31篇
  1995年   29篇
  1994年   35篇
  1993年   36篇
  1992年   29篇
  1991年   32篇
  1990年   30篇
  1989年   21篇
  1988年   34篇
  1987年   16篇
  1986年   17篇
  1985年   33篇
  1984年   35篇
  1983年   29篇
  1982年   32篇
  1981年   27篇
  1980年   28篇
  1979年   13篇
  1978年   10篇
  1977年   4篇
  1976年   5篇
  1975年   2篇
  1972年   1篇
排序方式: 共有1440条查询结果,搜索用时 0 毫秒
1.
Several species of ornithine decarboxylase were separated by chromatography of rat thymus and kidney extracts on DEAE-Sepharose CL-6B. One major and one minor species were absent from thymus of rats two hours after hormone treatment but otherwise, the elution profile was identical to thymus from control animals. The elution patterns of ODC activity in kidneys of rats treated 2.5 or 5 hours before sacrifice with dexamethasone differ from that of control kidney and from each other. Enzyme from kidneys early after hormone treatment is eluted earlier than enzyme from control tissue, while at 5 hours, the enzyme is eluted much later than in the control. This suggests that the hormone-induced activity is subsequently modified.  相似文献   
2.
Summary An antiserum against glutamate decarboxylase (GAD) of the rat brain was used to locate GAD activity in sections of the nervous system of the cockroach, Periplaneta americana. The sixth abdominal ganglion was chosen because electrophysiological evidence suggests the presence of GABAergic inhibitory synapses in the cereal-giant interneuron system. Groups of somata and numerous fibres and tracts were positively labelled by the GAD antiserum. A posterior group of labelled somata could be identified close to the entry of the cereal nerves. A line of somata clusters lay along a ventro-lateral furrow. Another discrete row of GAD-like cells was located dorso-laterally. Some small cells among the dorsal unpaired neurons were labelled. A small central group appeared under these cells. An abundance of GAD-like processes and transversal tracts were found within the neuropile. The different systems of GABAergic inhibitors in the ganglion are discussed; in particular we show that the fibres of cereal nerve X are not labelled. This demonstrates that the latter act on the giant fibres via interneurons. We suggest that the group that sends axons into the overlapping region between the cereal nerve and the giant fibre could be the inhibitory interneurons involved in this system.  相似文献   
3.
Glutamic acid decarboxylase (GAD), gamma-[3H]-aminobutyric acid [( 3H]GABA) high-affinity uptake into synaptosomes, and endogenous GABA content were measured in the rat striatum 2-3 weeks following 6-hydroxydopamine injection in the ipsilateral substantia nigra to destroy the nigrostriatal dopaminergic pathway and after kainic acid injection into the centromedial-parafascicular complex of the ipsilateral thalamus to lesion the thalamostriatal input. Both lesions resulted in apparent GAD increase concomitant with a decreased [3H]GABA uptake into striatal synaptosomes. GABA content was increased selectively following the dopaminergic lesion. Kinetic analysis of the uptake process for [3H]GABA showed selectively a decreased Vmax following the dopaminergic lesion; in animals with thalamic lesion, however, the change only concerned the Km, which showed a decreased affinity of the transport sites for [3H]GABA. Determination of Km and Vmax for GAD action on its substrate glutamic acid showed an increased affinity of GAD for glutamic acid in the case of the dopaminergic lesion without any change in Vmax, whereas the thalamic lesion resulted in GAD increase concomitant with a selective increase in Vmax. These data suggest that striatal GABA neurons are under the influence of nigrostriatal dopaminergic neurons which may reduce the GABA turnover, whereas the exact nature of the powerful control also revealed on these neurons following thalamic lesion remains to be determined. Both lesions induced adaptive neurochemical responses of striatal GABA neurons, possibly reflecting in the case of the dopaminergic deprivation an increased GABA turnover.  相似文献   
4.
Aromatic L-amino acid decarboxylase (AAAD) activity of rat retina is low in animals placed in the dark. When the room lights are turned on, activity rises for almost 3 h and reaches values that are about twice the values found in the dark. A study of the kinetics of the enzyme revealed that the apparent Km values for L-3,4-dihydroxyphenylalanine and pyridoxal-5'-phosphate were unchanged in light- and dark-exposed animals, whereas the Vmax increased in the light. Treating the animals with cycloheximide before exposure to light prevented the increase of enzyme activity. Immunotitration with antibodies to AAAD suggested that more enzyme molecules are present in the light than in the dark. When the room lights are turned off AAAD activity drops rapidly at first and then more slowly, suggesting that at least two processes are responsible for the fall of enzyme activity. Exposure to short periods of dark followed by light results in a rapid increase of AAAD activity. Mixing homogenates from light- and dark-exposed rats results in activity values that are less than expected, suggesting the presence of an endogenous inhibitor(s). These studies demonstrate that AAAD activity is modulated in vivo.  相似文献   
5.
Immunogold labelling has been used to determine the cellular distribution of glycine decarboxylase in leaves of C3, C3–C4 intermediate and C4 species in the genera Moricandia, Panicum, Flaveria and Mollugo. In the C3 species Moricandia foleyi and Panicum laxum, glycine decarboxylase was present in the mitochondria of both mesophyll and bundle-sheath cells. However, in all the C3–C4 intermediate (M. arvensis var. garamatum, M. nitens, M. sinaica, M. spinosa, M. suffruticosa, P. milioides, Flaveria floridana, F. linearis, Mollugo verticillata) and C4 (P. prionitis, F. trinervia) species studied glycine decarboxylase was present in the mitochondria of only the bundle-sheath cells. The bundle-sheath cells of all the C3–C4 intermediate species have on their centripetal faces numerous mitochondria which are larger in profile area than those in mesophyll cells and are in close association with chloroplasts and peroxisomes. Confinement of glycine decarboxylase to the bundle-sheath cells is likely to improve the potential for recapture of photorespired CO2 via the Calvin cycle and could account for the low rate of photorespiration in all C3–C4 intermediate species.Abbreviation and symbol kDa kilodaltons - CO2 compensation point  相似文献   
6.
Summary In the rat, gastric histamine is stored predominantly in the enterochromaffin-like (ECL) cells, which are located basally in the oxyntic mucosa. The functional significance of histamine in the ECL cells is a matter of speculation. In this study the effect of depletion of histamine on the properties and ultrastructure of the ECL cells was examined. Histamine synthesis was inhibited with -fluoromethylhistidine (3 mg·kg-1·h-1) given via osmotic minipumps over a period of 24 h. The treatment reduced the histidine decarboxylase activity (approximately 20% remaining) and histamine concentration (less than 20% remaining) in the oxyntic mucosa, as well as the intensity of histamine- and chromogranin A-immunostaining in the ECL cells, compared to control rats. The cytoplasmic (secretory) granules/vesicles were greatly reduced in number and size following -fluoromethylhistidine administration. The histamine immunostaining of the mast cells, which occurs at the mucosal surface and in the submucosa, appeared unaffected. We conclude that ECL cell histamine accounts for at least 80% of the total oxyntic mucosal histamine in the rat and that it represents a more mobile pool than mast cell histamine. The reduction in the number and size of the ECL cell granules/vesicles following histamine depletion is in accord with the idea that they represent the storage site for histamine.  相似文献   
7.
The relative contributions made by the l-arginine/agmatine/N-carbamoylputrescine/putrescine and the l-ornithine/putrescine pathways to hyoscyamine formation have been investigated in a transformed root culture of Datura stramonium. The activity of either arginine decarboxylase (EC 4.1.1.19) or ornithine decarboxylase (EC 4.1.1.17) was suppressed in vivo by using the specific irreversible inhibitors of these activities, dl--difluoromethylarginine or dl--difluoromethylornithine, respectively. It was found that suppression of arginine decarboxylase resulted in a severe decrease in free and conjugated putrescine and in the putrescine-derived intermediates of hyoscyamine biosynthesis. In contrast, the suppression of ornithine decarboxylase activity stimulated an elevation of arginine decarboxylase and minimal loss of metabolites from the amine and alkaloid pools. The stimulation of arginine decarboxylase was not, however, sufficient to maintain the same potential rate of putrescine biosynthesis as in control tissue. It is concluded that (i) in Datura the two routes by which putrescine may be formed do not act in isolation from one another, (ii) arginine decarboxylase is the more important activity for hyoscyamine formation, and (iii) the formation of polyamines is favoured over the biosynthesis of tropane alkaloids. An interaction between putrescine metabolism and other amines is also indicated from a stimulation of tyramine accumulation seen at high levels of dl--difluoromethylornithine.Abbreviations ADC arginine decarboxylase - DFMA dl--dif-luoromethylarginine - DFMO dl--difluoromethylornithine - MPO N-methylputrescine oxidase - ODC ornithine decarboxylase - PMT putrescine N-methyltransferase We are indebted to Dr. E.W.H. Bohme of Merrell Dow Research Laboratories (Cincinnati, Ohio, USA) for kind gifts of DFMO and DFMA and to Dr. M.J.C. Rhodes for helpful advice and discussion.  相似文献   
8.
1. Retina-cell aggregate cultures expressed glutamate decarboxylase activity (L-glutamate 1-carboxylase; EC 4.1.1.15) as a function of culture differentiation. 2. Glutamic acid decarboxylase (GAD) activity was low in the initial phases of culture and increased eight-fold until culture day 7, remaining high up to day 13 (last stage studied). 3. The addition of GABA to the culture medium 24 h after cell seeding almost totally prevented the expression of GAD activity. 4. In association with decreased enzyme activity, aggregates exposed to GABA did not display immunoreactivity for GAD, suggesting that GAD molecules were either lost from GABAergic neurons or significantly altered with GABA treatment. 5. Control, untreated aggregates showed intense GAD immunoreactivity in neurons. Positive cell bodies were characterized by a thin rim of labeled cytoplasm with thickest labeling at the emergence of the main neurite. 6. Heavily labeled patches were also observed throughout the aggregates, possibly reflecting regions enriched in neurites. 7. The GABA-mediated reduction of GAD immunoreactivity was a reversible phenomenon and could be prevented by picrotoxin.  相似文献   
9.
The recent identification of two genes encoding distinct forms of the GABA synthetic enzyme, glutamate decarboxylase (GAD), raises the possibility that varying expression of the two genes may contribute to the regulation of GABA production in individual neurons. We investigated the postnatal development the two forms of GAD in the rat cerebellum. The mRNA for GAD67, the form which is less dependent on the presence of the cofactor, pyridoxal phosphate (PLP), is present at birth in presumptive Purkinje cells and increases during postnatal development. GAD67 mRNA predominates in the cerebellum. The mRNA for GAD65, which displays marked PLP-dependence for enzyme activity, cannot be detected in cerebellar cortex by in situ hybridization until P7 in Purkinje cells, and later in other GABA neurons. In deep cerebellar nuclei, which mature prenatally, both forms of GAD mRNA can be detected at birth. The amounts of immunoreactice GAD and GAD enzyme activity parallel changes in mRNA levels. We suggest that the delayed appearance of GAD65 is coincident with synapse formation between GABA neurons and their targets during the second postnatal week. GAD67 mRNA may be present prior to synaptogenesis to produce GABA for trophic and metabolic functions.Special issue dedicated to Dr. Eugene Roberts.  相似文献   
10.
In adult rats, a significant portion of brain ethanolamine glycerophospholipids are synthesized by a pathway involving phosphatidylserine decarboxylase, a mitochondrial enzyme. We have now examined whether this enzyme plays a particularly prominent role during development. Activities for both phosphatidylserine decarboxylase and succinate dehydrogenase (another mitochondrial enzyme) were determined in brain homogenates from rats 5 days of age to adulthood. Succinate dehydrogenase activity, expressed on a per unit brain protein basis, increased markedly during development. This pattern has been reported previously and is as expected from the postnatal increase in oxidative metabolism. In contrast, phosphatidylserine decarboxylase activity decreased 40% from 5 to 30 days of age. The apparent Km for brain phosphatidylserine decarboxylase was 85 microM in both young (8- and 20-day-old) and adult animals. Parallel studies in vivo were carried out to determine the contribution of the phosphatidylserine decarboxylase pathway, relative to pathways utilizing ethanolamine directly, to the synthesis of brain ethanolamine glycerophospholipids. Animals were injected intracranially with a mixture of L-[G-3H]serine and [2-14C]ethanolamine and incorporation into the base moieties of the phospholipids determined. The 3H/14C ratio of ethanolamine glycerophospholipids decreased about 50% during development. Our studies in vitro and in vivo both suggest that phosphatidylserine decarboxylase plays a significant role in the synthesis of brain ethanolamine glycerophospholipids at all ages, although it is relatively more prominent early in development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号