首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2014年   4篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
Diabetes mellitus (DM), a chronic multifarious metabolic disorder resulting from impaired glucose homeostasis has become one of the most challenging diseases with severe life threat to public health. The inhibition of α-glucosidase, a key carbohydrate hydrolyzing enzyme, could serve as one of the effective methodology in both preventing and treating diabetes through controlling the postprandial glucose levels and suppressing postprandial hyperglycemia. In this context, three series of diamine-bridged bis-coumarinyl oxadiazole conjugates were designed and synthesized by one-pot multi-component methodology. The synthesized conjugates (4a–j, 5a–j, 6a–j) were evaluated as potential inhibitors of glucosidases. Compound 6f containing 4,4′-oxydianiline linker was identified as the lead and selective inhibitor of α-glucosidase enzyme with an IC50 value of 0.07 ± 0.001 μM (acarbose: IC50 = 38.2 ± 0.12 μM). This inhibition efficacy was ∼545-fold higher compared to the standard drug. Compound 6f was also emerged as the lead molecule against intestinal maltase-glucoamylase with good inhibition strength (IC50 = 0.04 ± 0.02 μM) compared to acarbose (IC50 = 0.06 ± 0.01 μM). Against β-glucosidase enzyme, compound 6 g was noted as the lead inhibitor with IC50 value of 0.08 ± 0.002 μM. Michaelis–Menten kinetic experiments were performed to explore the mechanism of inhibition. Molecular docking studies of the synthesized library of hybrid structures against glucosidase enzyme were performed to describe ligand-protein interactions at molecular level that provided an insight into the biological properties of the analyzed compounds. The results suggested that the inhibitors could be stabilized in the active site through the formation of multiple interactions with catalytic residues in a cooperative fashion. In addition, strong binding interactions of the compounds with the amino acid residues were effective for the successful identification of α-glucosidase inhibitors.  相似文献   
2.
A new series of glycosyl oxadiazoles compounds were synthesized and characterized through 1H NMR, 13C NMR, IR and HRMS. The anti-tumor activities for MDA-MB-231 of all these new compounds were screened in vitro by MTT assay. Due to the modification of gastrodin analogues, the anti-tumor activities of these 1,3,4-oxadiazoles derivatives were greatly improved. Six compounds (6c, 6d, 6i, 6j, 6k and 6l) displayed relatively higher MDA-MB-231 potency with IC50 values (0.89, 0.26, 1.35, 3.60, 0.95 and 1.08 μM) compared with the reference medicine Rosiglitazone (5.23 μM).  相似文献   
3.
A range of novel hydrazine bridged bis-indoles was prepared from readily available indole-7-glyoxyloylchlorides and 7-trichloroacetylindoles and underwent cyclodehydration to produce 2,5-di(7-indolyl)-1,3,4-oxadiazoles and a 2,2′-bi-1,3,4-oxadiazolyl with phosphoryl chloride in ethyl acetate. This efficient protocol was subsequently used for the synthesis of 2- and 7-indolyl 2-(1,3,4-thiadiazolyl)ketones from related indolyl-hydrazine carbothioamides. The synthesised bis-indoles were evaluated for their antimicrobial properties, particularly the inhibition of protein–protein complex formation between RNA polymerase and σ factor and their bactericidal effect on Gram positive Bacillus subtilis and Gram negative Escherichia coli.  相似文献   
4.
Despite increased research efforts to find new treatments for tuberculosis in recent decades, compounds with novel mechanisms of action are still required. We previously identified a series of novel aryl-oxadiazoles with anti-tubercular activity specific for bacteria using butyrate as a carbon source. We explored the structure activity relationship of this series. Structural modifications were performed in all domains to improve potency and physico-chemical properties. A number of compounds displayed sub-micromolar activity against M. tuberculosis utilizing butyrate, but not glucose as the carbon source. Compounds showed no or low cytotoxicity against eukaryotic cells. Three compounds were profiled in mouse pharmacokinetic studies. Plasma clearance was low to moderate but oral exposure suggested solubility-limited drug absorption in addition to first pass metabolism. The presence of a basic nitrogen in the linker slightly increased solubility, and salt formation optimized aqueous solubility. Our findings suggest that the 1,3,4-oxadiazoles are useful tools and warrant further investigation.  相似文献   
5.
In the present investigation, a series of 1,5-dimethyl-2-phenyl-4-{[(5-aryl-1,3,4-oxadiazol-2-yl)methyl]amino}-1,2-dihydro-3H-pyrazol-3-one were subjected to molecular properties prediction, drug-likeness by Molinspiration (Molinspiration, 2008) and MolSoft (MolSoft, 2007) software, lipophilicity and solubility parameters using ALOGPS 2.1 program. The compounds followed the Lipinski ‘Rule of five’ were synthesized for antimicrobial and antitubercular screening as oral bioavailable drugs/leads. Maximum drug-likeness model score (0.95) was found for compound, 4a. All the synthesized compounds were characterized by IR, NMR and mass spectral analysis followed by antimicrobial and antimycobacterial screening. Among the title compounds, compound 4d showed pronounced activity against Mycobacterium tuberculosis H37Rv and isoniazid resistant M. tuberculosis (INHR-TB) with minimum inhibitory concentrations (MICs) 0.78 μM and 1.52 μM, respectively. The compound, 4a showed maximum activity against all bacterial strains with MIC 4–8 μg/mL comparable to standard drug ciprofloxacin, while the compounds, 4e and 4k showed maximum antifungal activity with MIC 8–16 μg/mL less active than standard drug fluconazole.  相似文献   
6.
7.
A series of new pyrazolo[3,4-b]pyrazines containing, 1,2,4-oxadiazolyl, thiadiazolyl, imidazothiadiazolyl, thiazolidinonyl, substituents and other different substituents, was synthesized using 1,6-diphenyl-3-methyl-lH-pyrazolo[3,4-b]pyrazine-5-carbonitrile (2) as a starting material. Some of the newly prepared compounds were evaluated for their anticonvulsant activity. Compounds 9a, 13ad and 14a at a dose of 10 mg/kg showed very significant anticonvulsant activity and increased the latency time of PTZ-induced tonic seizures. Compound 9b showed significant effect.  相似文献   
8.
The reality and intensity of antibiotic resistance in pathogenic bacteria calls for the rapid development of new antimicrobial drugs. In bacteria, trans-translation is the primary quality control mechanism for rescuing ribosomes arrested during translation. Because trans-translation is absent in eukaryotes but necessary to avoid ribosomal stalling and therefore essential for bacterial survival, it is a promising target either for novel antibiotics or for improving the activities of the protein synthesis inhibitors already in use. Oxadiazole derivatives display strong bactericidal activity against a large number of bacteria, but their effects on trans-translation were recently questioned. In this work, a series of new 1,3,4-oxadiazole derivatives and analogs were synthesized and assessed for their efficiency as antimicrobial agents against a wide range of gram-positive and gram-negative pathogenic strains. Despite the strong antimicrobial activity observed in these molecules, it turns out that they do not target trans-translation in vivo, but they definitely act on other cellular pathways.  相似文献   
9.
A series of 5-(1H-indol-3-yl)-N-aryl-1,3,4-oxadiazol-2-amines 8a–j has been designed, synthesized and tested in vitro as potential pro-apoptotic Bcl-2-inhibitory anticancer agents based on our previous lead compound 8a. Synthesis of the target compounds was readily accomplished through a cyclisation reaction between indole-3-carboxylic acid hydrazide (5) and substituted isothiocyanates 6a–j, followed by oxidative cyclodesulfurization of the corresponding thiosemicarbazide 7a–j using 1,3-dibromo-5,5-dimethylhydantoin. Active compounds of the series 8a–j were found to have sub-micromolar IC50 values selectively in Bcl-2 expressing human cancer cell lines; notably the 2-nitrophenyl analogue 8a was found to exhibit potent activity, and compounds 8a and 8e possessed comparable Bcl-2 binding affinity (ELISA assay) to the established natural product-based Bcl-2 inhibitor, gossypol. Molecular modeling studies helped to further rationalise anti-apoptotic Bcl-2 binding, and identified compounds 8a and 8e as candidates for further development as Bcl-2 inhibitory anticancer agents.  相似文献   
10.
In this study, we explored the effect of bioisostere replacement in a series of glycogen synthase kinase 3 (GSK3) inhibitors based on the imidazopyridine core. The synthesis and biological evaluation of a number of novel sulfonamide, 1,2,4‐oxadiazole, and thiazole derivates as amide bioisosteres, as well as a computational rationalization of the obtained results are reported.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号