首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   0篇
  2022年   2篇
  2020年   2篇
  2019年   9篇
  2018年   9篇
  2017年   7篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2004年   1篇
排序方式: 共有43条查询结果,搜索用时 93 毫秒
1.
A novel series of indazole tethered oxadiazoles (OTDs) derivatives were synthesized, characterized and screened for their anti-proliferative activity against hepatocellular carcinoma (HCC) cells. OTDs structure was further confirmed by Single-crystal X-ray diffraction studies. Among the tested OTDs, compound 2-(4-methoxyphenyl)-5-(1-methyl-1H-indazol-3-yl)-1,3,4-oxadiazole was found to inhibit the catalytical activity of SIRT2 and brings about apoptosis as shown by western blot analysis and flow cytometry data. Also, the tested OTDs were found to interact with the active site of human SIRT2 in silico but not with the cavity of co-crystal ligand 5-(3- hydroxypropyl)-3-(4-chlorophenyl)-1,2,4-oxadiazole, which indicate that these OTDs has potential in the development of SIRT2 inhibitors in liver cancer models.  相似文献   
2.

Two novel C-linked oxadiazole carboxamide nucleosides 5-(2′-deoxy-3′,5′-β-D-erythro-pentofuranosyl)-1,2,4-oxadiazole-5-carboxamide (1) and 5-(2′-deoxy-3′,5′-β-D-erythro-pentofuranosyl)-1,2,4-oxadiazole-3-carboxamide (2) were successfully synthesized and characterized by X-ray crystallography. The crystallographic analysis shows that both unnatural nucleoside analogs 1 and 2 adapt the C2′-endo (“south”) conformation. The orientation of the oxadiazole carboxamide nucleobase moiety was determined as anti (conformer A) and high anti (conformer B) in the case of the nucleoside analog 1 whereas the syn conformation is adapted by the unnatural nucleoside 2. Furthermore, nucleoside analogs 1 and 2 were converted with high efficiency to corresponding nucleoside triphosphates through the combination chemo-enzymatic approach. Oxadiazole carboxamide deoxyribonucleoside analogs represent valuable tools to study DNA polymerase recognition, fidelity of nucleotide incorporation, and extension.

  相似文献   
3.
A series of 1,3,4-oxadiazole derivatives containing 1,4-benzodioxan moiety (7a7q) have been designed, synthesized and evaluated for their antitumor activity. Most of the synthesized compounds were proved to have potent antitumor activity and low toxicity. Among them, compound 7a showed the most potent biological activity against Human Umbilical Vein Endothelial cells, which was comparable to the positive control. The results of apoptosis and flow cytometry (FCM) demonstrated that compound 7a induce cell apoptosis by the inhibition of MetAP2 pathway. Molecular docking was performed to position compound 7a into MetAP2 binding site in order to explore the potential target.  相似文献   
4.
Diabetes is one of the pre-dominant metabolic disorders all over the world. It is the prime reason of mortality and morbidity due to hyperglycemia which is link with numerus obstacles. Delaying absorption and digestion of carbohydrate has great therapeutic impact for governing postprandial hyperglycemia. Consequently, alpha glucosidase is one of the potential therapeutic approaches that reduce absorption of glucose and delay carbohydrate digestion hence maintaining blood glucose level. In this regard we have synthesized benzothiazole based oxadiazole in search of potent anti-diabetic agent as α-glucosidase Inhibitors. Benzothiazole based oxadiazole derivatives 123 have been synthesized, characterized by 1HNMR, 13CNMR, and MS and evaluated for α-glucosidase Inhibition. All analogs exhibited a varying degree of α-glucosidase inhibitory activity with IC50 values ranging in between 0.5 ± 0.01–30.90 ± 0.70 μM when compared with the standard acarbose (IC50 = 866.30 ± 3.20 μM). Structure activity relationship has been established for all compounds. Molecular docking studies were performed to predict the binding interaction of the compounds with the active site of enzyme.  相似文献   
5.
Two new series of benzimidazole bearing oxadiazole[1-(1H-benzo[d]imidazol-2-yl)-3-(5-substituted-1,3,4-oxadiazol-2-yl)propan-1-ones (4a-l)] and triazolo-thiadiazoles[1-(1H-benzo[d]imidazol-2-yl)-3-(6-(substituted)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-3-yl)propan-1-one (7a-e)] have been synthesized successfully from4-(1H-benzo[d]imidazol-2-yl)-4-oxobutanehydrazide (3) with an aim to produce promising anticancer agents. In vitro anticancer activities of synthesized compounds were screened at the National Cancer Institute (NCI), USA, according to their applied protocol against full NCI 60 human cell lines panel; results showed good to remarkable anticancer activity. Among them, compound (4j, NCS: 761980) exhibited significant growth inhibition and further screened at 10-fold dilutions of five different concentrations (0.01, 0.1, 1, 10 and 100μM) with GI(50) values ranging from 0.49 to 48.0μM and found superior for the non-small cell lung cancer cell lines like HOP-92 (GI(50) 0.49, TGI 19.9,LC(50) >100 and Log(10)GI(50) -6.30, Log(10)TGI -4.70, Log(10)LC(50) >-4.00).  相似文献   
6.
A series of imidazopyridinyl-1,3,4-oxadiazole conjugates were synthesized and investigated for their cytotoxic activity and some compounds showed promising cytotoxic activity. Compound 8q (NSC: 763639) exhibited notable growth inhibition that satisfies threshold criteria at single dose (10 μM) on all human cancer cell lines. This compound was further evaluated at five dose levels (0.01, 0.1, 1, 10 and 100 μM) to obtain GI50 values ranging from 1.30 to 5.64 μM. Flow cytometric analysis revealed that compound 8q arrests the A549 cells in sub G1 phase followed by induction of apoptosis which was further confirmed by Annexin-V-FITC, Hoechst nuclear staining, caspase 3 activation, measurement of mitochondrial membrane potential and ROS generation. Topo II mediated DNA relaxation assay results showed that conjugate 8q could significantly inhibit the activity of topo II. Moreover, molecular docking studies also indicated binding to the topoisomerase enzyme (PDBID 1ZXN).  相似文献   
7.
Current study is based on the sequential conversion of indolyl butanoic acid (1) into ethyl indolyl butanoate (2), indolyl butanohydrazide (3), and 1,3,4-oxadiazole-2-thiol analogs (4) by adopting chemical transformations. In a parallel series of reactions, 2-bromo-N-phenyl/arylacetamides (7a-l) were synthesized by reacting different amines derivatives (5a-l) with 2-bromoacetyl bromide (6) to serve as electrophile. Then, the synthesized electrophiles (7a-l) were treated with nucleophilic 1,3,4-oxadiazole-2-thiol analog (4) to afford a range of N-substituted derivatives (8a-l). The structural confirmation of all the synthetic compounds was carried out by IR, 1H-, 13C NMR, EI-MS, and CHN analysis data. All synthesized molecules (8a-l) were tested for their antidiabetic potential via inhibition of the α-glucosidase enzyme followed by their in silico study. Their cytotoxicity profile was also ascertained via hemolytic activity and all of them possessed very low cytotoxicity. Compounds 8h and 8l were found most active having IC50 values 9.46 ± 0.03 µM and 9.37 ± 0.03 µM, respectively. However, all other molecules also exhibited good to moderate inhibition potential with IC50 values between 12.68 ± 0.04–37.82 ± 0.07, compared to standard acarbose (IC50 = 37.38 ± 0.12 µM), hence can be used as lead molecules for further research in order to get better antidiabetic agents.  相似文献   
8.
We used the concept of bioisosteres to design and synthesize a novel series of dasatinib derivatives for the treatment of leukemia. Unfortunately, most of the dasatinib derivatives did not show appreciable inhibition against leukemia cell lines K562 and HL60. However, acrylamide compound 2c had comparable inhibitory activity with dasatinib against K562 cells (IC50?=?0.039?nM vs. 0.069?nM). And amide compound 2a and acrylamide compound 2c also had comparable inhibitory activity with dasatinib against the leukemia cell line HL60 (IC50?=?0.25?nM and 0.26?nM vs. 0.11?nM). Against the leukemia progenitor cell line KG1a, triazole compounds 15a and 15d15f and oxadiazole compounds 24a24d were more potent than dasatinib. In particular, the hydroxyl compounds 15a and 24a were about 64 and 180 fold more potent than dasatinib against KG1a cells (IC50?=?0.14?μM and 0.05?μM vs. 8.98?μM). Compounds 15a and 24a also inhibited colony formation in MCF-7 cells and inhibited cell migration in the cell wound scratch assay in B16BL6 cells. Moreover, hydroxyl compounds 15a and 24a had low toxicity in vivo.  相似文献   
9.
A new series of 2,3-disubstituted quinazolin-4(3H)-one compounds including oxadiazole and furan rings was synthesized. Their inhibitory activities on urease were assessed in vitro. All newly synthesized compounds exhibited potent urease inhibitory activity in the range of IC50 = 1.55 ± 0.07–2.65 ± 0.08 µg/mL, when compared with the standard urease inhibitors such as thiourea (IC50 = 15.08 ± 0.71 µg/mL) and acetohydroxamic acid (IC50 = 21.05 ± 0.96 µg/mL). 2,3-Disubstituted quinazolin-4(3H)-one derivatives containing furan ring (3a-e) were found to be the most active inhibitors when compared with the compounds 2a-e bearing oxadiazole ring. Compound 3a, bearing 4-chloro group on phenyl ring, was found as the most effective inhibitor of urease with the IC50 value of 1.55 ± 0.11 µg/mL. The molecular docking studies of the newly synthesized compounds were performed to identify the probable binding modes in the active site of the Jack bean urease (JBU) enzymes.  相似文献   
10.
Structure activity relationship (SAR) investigation of an oxadiazole based series led to the discovery of several potent FLAP inhibitors. Lead optimization focused on achieving functional activity while improving physiochemical properties and reducing hERG inhibition. Several compounds with favorable in vitro and in vivo properties were identified that were suitable for advanced profiling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号