首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   0篇
  2013年   6篇
  2012年   8篇
  2011年   6篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2006年   5篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   5篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1993年   5篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   6篇
  1986年   3篇
  1985年   5篇
  1984年   11篇
  1983年   6篇
  1982年   10篇
  1981年   6篇
  1980年   2篇
排序方式: 共有117条查询结果,搜索用时 15 毫秒
1.
This is the ninth installment of our annual review of research involving the endogenous opiate peptides. It is restricted to the non-analgesic and behavioral studies of the opiate peptides published in 1986. The specific topics this year include stress; tolerance and dependence; eating; drinking; gastrointestinal, renal, and hepatic processes; mental illness; learning, memory, and reward; cardiovascular responses; respiration and thermoregulation; seizures and other neurological disorders; activity; sex, pregnancy, and development; and some other behaviors.  相似文献   
2.
3H-Naloxone was used to demonstrate the presence of specific opiate binding sites in uterine membrane preparations of rats. 3H-Naloxone binding (0.41-27 nM) was found to be rapid, saturable and reversible showing two populations of binding sites with the characteristic of high (KD 2.2 nM; Bmax 46.6 fmol/mg prot.) and low (KD 18.1 nM; Bmax 143.7 fmol/mg prot.) affinity. The number and affinity of the binding sites labelled by 3H-naloxone in the uterus were measured in the rat at mid (14 days), late (21 days) pregnancy and at parturition. The high and low affinity recognition sites labelled by 3H-naloxone showed a consistent reduction during pregnancy and at parturition without changes in the affinity constant. We concluded that pregnancy and parturition are associated with significant changes in the number of the opiate receptors bound in the uterus by 3H-naloxone. This phenomenon which seems to be linked with the several pregnancy-related changes in the levels of endogenous peptides and hormones could be relevant to further explain the pregnancy related changes in pain perception and maternal behavior.  相似文献   
3.
Abstract: In the present communication we report that Ca2+-dependent acetylcholine release from K+-depolarized Torpedo electric organ synaptosomes is inhibited by morphine, and that this effect is blocked by the opiate antagonist naloxone. This finding suggests that the purely cholinergic Torpedo electric organ neurons contain pre-synaptic opiate receptors whose activation inhibits acetylcholine release. The mechanisms underlying this opiate inhibition were investigated by comparing the effects of morphine on acetylcholine release induced by K+ depolarization and by the Ca2+ ionophore A23187 and by examining the effect of morphine on 45Ca2+ influx into Torpedo nerve terminals. These experiments revealed that morphine inhibits 45Ca2+ influx into K+-depolarized Torpedo synaptosomes and that this effect is blocked by naloxone. The effects of morphine on K+ depolarization-mediated 45Ca2+ influx and on acetylcholine release have similar dose dependencies (half-maximal inhibition at 0.5–1 μ M ), suggesting that opiate inhibition of release is due to blockage of the presynaptic voltage-dependent Ca2+ channel. This conclusion is supported by the finding that morphine does not inhibit acetylcholine release when the Ca2+ channel is bypassed by introducing Ca2+ into the Torpedo nerve terminals via the Ca2+ ionophore.  相似文献   
4.
Abstract: (β-FNA, the β -fumaramate methyl ester of naltrexone, has been shown to antagonize irreversibly the actions of morphine on the guinea pig ileum and mouse vas deferens bioassays but does not affect the actions of δ-receptor ligands on the mouse vas deferens bioassay, suggesting that the compound does not irreversibly bind to the S receptor. In this paper we examine the effect of (β -FNA on the binding of the prototypic δ agonists, Leuenkephalin and d -Ala2- d -Leu5-enkephalin, its metabolically stable analogue, and show that treatment of membranes with β -FNA does lead to alterations in the in vitro properties of δ receptors.  相似文献   
5.
N-Ethylmaleimide (NEM) decreases opiate agonist binding presumably by blocking crucial sulfhydryl (SH) groups at receptor binding sites. At physiological pH, NEM decreased GTP and manganese regulation but increased sodium effects on [3H]D-Ala2-Met5-enkephalinamide (D-Ala enk) binding to rat brain membranes. To determine the apparent pK values of putative SH groups in opiate receptors that react with NEM, rat brain membranes were incubated with 100-250 microM NEM in buffers ranging from pH 4.5 to 8.0. Results showed that lowering pH below 6.5 reduced the NEM effect on opiate receptor functions and that the apparent pK values of NEM-reacting SH groups in binding and regulatory sites ranged between 5.4 to 6.0. Most of the total SH groups in brain membranes continued to react with NEM at low pH, so that when nonspecific SH groups were blocked by incubating membranes at pH 4.5 with NEM, opiate receptors became sensitive to very low concentrations (1 microM) of NEM.  相似文献   
6.
The benozomorphan derivative (-)-2-[2-(p-bromoacetamidophenyl)ethyl]-5,9 alpha-dimethyl-2'-hydroxy-6,7-benzomorphan (BAB), capable of reacting with nucleophilic groups, acts on neuroblastoma X glioma hybrid cells as a potent, irreversible opiate agonist. Its potency in inhibiting the increase in cellular cyclic AMP, evoked by prostaglandin E1, is comparable to that of Leu-enkephalin. This also applies to its capacity to compete with [3H]D-Ala2-Met-enkephalinamide ([3H]DAEA) in binding on cell membrane preparations. The comparatively lower potency of (-)-2-[2-(p-acetamidophenyl)-ethyl]-5,9 alpha-dimethly-2'-hydroxy-5,7-benzomorphan (AB), which differs from BAB in the substitution of the bromoacetamido group by an acetamido group, is of the same order of magnitude as that of morphine. The covalent interaction of BAB with the opiate receptors is deduced from the observations that (1) it is not possible to wash away this compound from the receptors, (2) the potency of BAB in inhibiting the specific binding of [3H]DAEA increases with prolonged preincubation time, and (3) AB behaves as a reversible agonist.  相似文献   
7.
Abstract: There appear to be two anatomically distinct β-endorphin (βE) pathways in the brain, the major one originating in the arcuate nucleus of the hypothalamus and a smaller one in the area of the nucleus tractus solitarius (NTS) of the caudal medulla. Previous studies have shown that these two proopiomelanocortin (POMC) systems may be differentially regulated by chronic morphine treatment, with arcuate cells down-regulated and NTS cells unaffected. In the present experiments, we examined the effects of chronic opiate antagonist treatment on βE biosynthesis across different CNS regions to assess whether the arcuate POMC system would be regulated in the opposite direction to that seen after opiate agonist treatment and to determine whether different βE-containing areas might be differentially regulated. Male adult rats were administered naltrexone (NTX) by various routes for 8 days (subcutaneous pellets, osmotic minipumps, or repeated intraperitoneal injections). Brain and spinal cord regions were assayed for total βE-ir, different molecular weight immunoreactive β-endorphin (βE-ir) peptides, and POMC mRNA. Chronic NTX treatment, regardless of the route of administration, reduced total βE-ir concentrations by 30–40% in diencephalic areas (the arcuate nucleus, the remaining hypothalamus, and the thalamus) and the midbrain, but had no effect on βE-ir in the NTS or any region of the spinal cord. At the same time, NTX pelleting increased POMC mRNA levels in the arcuate to ~ 140% of control values. These data suggest that arcuate POMC neurons are up-regulated after chronic NTX treatment (whereas NTS and spinal cord systems remain unaffected) and that they appear to be under tonic inhibition by endogenous opioids. Chromatographic analyses demonstrated that, after chronic NTX pelleting, the ratio of full length βE1–31 to more processed βE-ir peptides (i.e., βE1–27 and βE1–26) tended to increase in a dose-dependent manner in diencephalic areas. Because βE1–31 is the only POMC product that possesses opioid agonist properties, and βE1–27 has been posited to function as an endogenous anatgonist of βE1–31, the NTX-induced changes in the relative concentrations of βE1–31 and βE1–27/βE1–26 may represent a novel regulatory mechanism of POMC cells to alter the opioid signal in the synapse.  相似文献   
8.
We have studied the role of second messenger and protein phosphorylation pathways in mediating changes in neuronal function associated with opiate addiction in the rat locus coeruleus. We have found that chronic opiates increase levels of the G-protein subunits Gi and Go, adenylate cyclase, cyclic AMP-dependent protein kinase, and a number of phosphoproteins (including tyrosine hydroxylase) in this brain region. Electrophysiological data have provided direct support for the view that this up-regulation of the cyclic AMP system contributes to opiate tolerance, dependence, and withdrawal exhibited by these neurons. As the adaptations in G-proteins and the cyclic AMP system appear to occur at least in part at the level of gene expression, current efforts are aimed at identifying the mechanisms, at the molecular level, by which opiates regulate the expression of these intracellular messenger proteins in the locus coeruleus. These studies will lead to an improved understanding of the biochemical basis of opiate addiction.Special issue dedicated to Dr. Paul Greengard  相似文献   
9.
本实验用受体放射自显影方法,研究了新生大鼠辣椒素皮下注射,成年后脊髓内3H-埃托菲(3H-etorphine)结合位点数的变化。发现新生鼠辣椒素处理可以引起脊髓后角浅层及中央管周围’H-etorphine结合位点明显减,其中Ⅰ、Ⅱ层自显影银粒数减少36%左右。Ⅲ层减少20%,中央管周围减少11%。而前角及背外测束3H-etorphine结合位点数无显著性差异。结果表明脊髓内初级感觉传入细纤维上有阿片受体分布。本研究为探明阿片类物质在脊髓水平的痛觉调控机制提供一定的形态学依据。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号