首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   1篇
  国内免费   2篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   7篇
  2014年   10篇
  2013年   2篇
  2012年   4篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   7篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2001年   2篇
  1999年   1篇
排序方式: 共有64条查询结果,搜索用时 15 毫秒
1.
2.
Analyzing the chemosensory organs of the moth Heliothis virescens, three proteins belonging to the family of insect chemosensory proteins (CSPs) have been cloned; they are called HvirCSP1, HvirCSP2 and HvirCSP3. The HvirCSPs show about 50% identity between each other and 30–76% identity to CSPs from other species. Overall, they are rather hydrophilic proteins but include a conserved hydrophobic motif. Tissue distribution and temporal expression pattern during the last pupal stages were assessed by Northern blots. HvirCSP mRNAs were detected in various parts of the adult body with a particular high expression level in legs. The expression of HvirCSP1 in legs started early during adult development, in parallel with the appearance of the cuticle. HvirCSP1 mRNA was detectable five days before eclosion (day E-5), increased dramatically on day E-3 and remained at high level into adult life. The tissue distribution and the time course of appearance of HvirCSPs are in agreement with a possible role in contact chemosensation.  相似文献   
3.
G protein-coupled receptors (GPCRs) are seven-transmembrane-spanning proteins that mediate cellular and physiological responses. They are critical for cardiovascular function and are targeted for the treatment of hypertension and heart failure. Nevertheless, current therapies only target a small fraction of the cardiac GPCR repertoire, indicating that there are many opportunities to investigate unappreciated aspects of heart biology. Here, we offer an update on the contemporary view of GPCRs and the complexities of their signalling, and review the roles of the ‘classical’ GPCRs in cardiovascular physiology and disease. We then provide insights into other GPCRs that have been less extensively studied in the heart, including orphan, odorant and taste receptors. We contend that these novel cardiac GPCRs contribute to heart function in health and disease and thereby offer exciting opportunities to therapeutically modulate heart function.  相似文献   
4.
This work shows the feasibility of an olfactory biosensor based on the immobilization of Saccharomyces cerevisiae yeast cells genetically modified to express the human olfactory receptor OR17-40 onto interdigitated microconductometric electrodes. This olfactory biosensor has been applied to the detection of its specific odorant (helional) with a high sensitivity (threshold 10−14 M). In contrast, no significant response was observed using a non-specific odorant (heptanal), which suggests a good selectivity. Thus, this work may represent a first step towards a new kind of bioelectronic noses based on whole yeast cells and allowing a real time monitoring of olfactory receptor activation. Presented at the joint biannual meeting of the SFB-GEIMM-GRIP, Anglet, France, 14–19 October, 2006.  相似文献   
5.
Insects have an enormous impact on global public health as disease vectors and as agricultural enablers as well as pests and olfaction is an important sensory input to their behavior. As such it is of great value to understand the interplay of the molecular components of the olfactory system which, in addition to fostering a better understanding of insect neurobiology, may ultimately aid in devising novel intervention strategies to reduce disease transmission or crop damage. Since the first discovery of odorant receptors in vertebrates over a decade ago, much of our view on how the insect olfactory system might work has been derived from observations made in vertebrates and other invertebrates, such as lobsters or nematodes. Together with the advantages of a wide range of genetic tools, the identification of the first insect odorant receptors in Drosophila melanogaster in 1999 paved the way for rapid progress in unraveling the question of how olfactory signal transduction and processing occurs in the fruitfly. This review intends to summarize much of this progress and to point out some areas where advances can be expected in the near future.  相似文献   
6.
Chemosensory stimuli and sex steroid hormones are both required for the full expression of social behaviors in many species. The terrestrial salamander, Plethodon shermani, is an emerging nonmammalian system for investigating the nature and evolution of pheromonal communication, yet little is known regarding the role of sex steroid hormones. We hypothesized that increased circulating androgen levels in male P. shermani enhance chemoreception through morphological, behavioral, and physiological mechanisms. Experimental elevation of plasma androgens increased development of cirri, morphological structures thought to enhance the transfer of chemosensory cues from the substrate to the vomeronasal organ (VNO). Elevated plasma androgens also increased expression of a chemo-investigatory behavior (nose tapping) and increased preference for some female-derived chemosensory cues. Male-produced courtship pheromones activated a large number of cells in the VNO as measured by the method of agmatine uptake. However, androgen levels did not affect the total number of vomeronasal cells activated by male-produced courtship pheromones. Future studies will determine whether androgens potentially modulate responsiveness of the VNO to female-derived (as opposed to male-derived) chemosensory cues.  相似文献   
7.
The Ca2+-modulated ONE-GC membrane guanylate cyclase is a central component of the cyclic GMP signaling in odorant transduction. It is a single transmembrane spanning modular protein. Its intracellular region contains Ca2+ sensor recognition domains linked to GCAP1 and to neurocalcin δ, and a catalytic module. These domains sense increments in free Ca2+ and stimulate the catalytic module. The present study makes three significant mechanistic advancements. First, to date no ligand for the extracellular (ext) domain is known, for this reason ONE-GC has been deemed as an orphan receptor. The present study identifies its ligand. Uroguanylin stimulates ONE-GC through its ext domain. Second, so far no ligand is known that directly stimulates the catalytic module of any membrane guanylate cyclase. The presented evidence shows that in the presence of the semimicromolar range of free Ca2+, neurocalcin binds to the catalytic module and stimulates ONE-GC. Thus, ONE-GC has trimodal regulation, two occurring intracellularly and one extracellularly. Third, guanylin, a urine odorant, does not directly stimulate ONE-GC. This challenges the proposed hypothesis that the guanylin odorant signal occurs via ONE-GC [T. Leinders-Zufall, R.E. Cockerham, S. Michalakis, M. Biel, D.L. Garbers, R.R. Reed, F. Zufall, S.D. Munger, Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium, Proc. Natl. Acad. Sci. USA. 104 (2007) 14507-14512].  相似文献   
8.
9.
《Cell calcium》2014,55(4):191-199
Insect odorant receptors (ORs) are heteromeric complexes of an odor-specific receptor protein (OrX) and a ubiquitous co-receptor protein (Orco). The ORs operate as non-selective cation channels, also conducting Ca2+ ions. The Orco protein contains a conserved putative calmodulin (CaM)-binding motif indicating a role of CaM in its function. Using Ca2+ imaging to monitor OR activity we investigated the effect of CaM inhibition on the function of OR proteins. Ca2+ responses elicited in Drosophila olfactory sensory neurons by stimulation with the synthetic OR agonist VUAA1 were reduced and prolonged by CaM inhibition with the potent antagonist W7 but not with the weak antagonist W5. A similar effect was observed for Orco proteins heterologously expressed in CHO cells when CaM was inhibited with W7, trifluoperazine or chlorpromazine, or upon overexpression of CaM-EF-hand mutants. With the Orco CaM mutant bearing a point mutation in the putative CaM site (K339N) the Ca2+ responses were akin to those obtained for wild type Orco in the presence of W7. There was no uniform effect of W7 on Ca2+ responses in CHO cells expressing complete ORs (Or22a/Orco, Or47a/Orco, Or33a/Orco, Or56a/Orco). For Or33a and Or47a we observed no significant effect of W7, while it caused a reduced response in cells expressing Or22a and a shortened response for Or56a.  相似文献   
10.
昆虫嗅觉相关蛋白及嗅觉识别机理研究概述   总被引:1,自引:0,他引:1  
嗅觉是昆虫产生行为的基础之一,在长期进化的过程中昆虫形成了复杂的嗅觉系统,完成这一过程,需要有多种与嗅觉相关的蛋白参与,包括气味结合蛋白、化学感受蛋白、气味受体和感觉神经元膜蛋白等。了解昆虫感受外界信息的嗅觉机制可以帮助我们更好地理解昆虫识别配偶、天敌及寻找食物来源、产卵场地等行为特征,为进一步调控昆虫的行为、防控害虫侵袭、保护和利用有益昆虫奠定基础。本文综述了昆虫嗅觉相关的几类重要蛋白的生化特性和生理功能,并对昆虫气味分子的识别机制、气味分子在昆虫体内运输机制的最新研究进展进行了概述。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号